Pareto-Efficient Hybridization for Multi-Objective Recommender Systems

本文提出了一种混合推荐方法,旨在同时优化推荐系统的准确性、新颖性和多样性。通过进化搜索和帕累托优化,找到了不受其他算法支配的混合推荐策略。实验证明,这种方法可以在不显著损害其他目标的情况下提升特定目标,同时允许根据用户需求动态调整推荐重点。
摘要由CSDN通过智能技术生成

ABSTRACT 简介


Performing accurate suggestions is an objective of paramount importance for effective recommender systems. Other important and increasingly evident objectives are novelty and diversity, which are achieved by recommender systems that are able to suggest diversified items not easily discovered by the users. Different recommendation algorithms have particular strengths and weaknesses when it comes to each of these objectives, motivating the construction of hybrid approaches. However, most of these approaches only focus on optimizing accuracy, with no regard for novelty and diversity. The problem of combining recommendation algorithms grows significantly harder when multiple objectives are considered simultaneously. For instance, devising multi-objective recommender systems that suggest items that are simultaneously accurate, novel and diversified may lead to a conflicting-objective problem, where the attempt to improve an objective further may result in worsening other competing objectives. In this paper we propose a hybrid recommendation approach that combines existing algorithms which differ in their level of accuracy, novelty and diversity. We employ an evolutionary search for hybrids following the Strength Pareto approach, which isolates hybrids that are not dominated by others (i.e., the so called Pareto frontier). Experimental results on two recommendation scenarios show that: (i) we can combine recommendation algorithms in order to improve an objective without significantly hurting other objectives, and (ii) we allow for adjusting the compromise between accuracy, diversity and novelty, so that the recommendation emphasis can be adjusted dynamically according to the needs of different users.

对于推荐系统来说,进行准确的推荐是至关重要的目标。另一个日益重要的目标是新颖性和多样性,多样性是通过推荐系统来达成的,推荐系统能够推荐用户不易发现的多样性物品。不同的推荐算法在实现每一个目标时都有其独特的优势和弱点,从而推动了混合方法的构建。然而,这些方法大多只注重优化精度,而不考虑新颖性和多样性。当同时考虑多个目标时,组合推荐算法变得更加困难。例如,设计多目标推荐系统,同时推荐准确、新颖和多样化的物品,可能会导致目标冲突问题,提升某个目标可能会导致其他竞争目标恶化。本文提出了一种混合推荐方法,该方法结合了现有算法的准确性、新颖性和多样性。我们采用强度帕累托方法对杂交种进行进化搜索,分离出不受其他杂交种支配的杂交种(即所谓的帕累托前沿)。在两种推荐场景下的实验结果表明:(1)我们可以将推荐算法结合起来,在不显著损害其他目标的情况下提升某个目标;(2)我们可以调整准确性、多样性和新颖性之间的折衷,从而根据不同用户的需求动态调整推荐应该强化哪个目标。

1. INTRODUCTION 概述


Recommender systems are increasingly emerging as enabling mechanisms devoted to overcoming problems that are inherent to information overload, providing intelligent information access and delivery, and thus potentially improving browsing and consumption experience. Historically, the typical goal of a recommender system is to maximize accuracy as much as possible in predicting and matching user information needs, often by considering individual delivered items in isolation [12]. More recently, however, it has become a consensus that the success of a recommender system depends on other dimensions of information utility, notably the diversity and novelty of the suggestions performed by the system [9, 19, 25, 33]. More specifically, even being accurate, obvious and monotonous recommendations are generally of little use, since they do not expose users to unprecedent experiences.

推荐系统正日益成为一种基本机制,致力于克服信息过载所固有的问题,提供智能信息访问和传递,从而可能改善浏览和消费体验。从历史上看,推荐系统的典型目标是尽可能提高预测和匹配用户信息需求的准确性,通常是通过单独考虑单个交付的物品来实现的[12]。然而,最近的一个共识是,推荐系统的成功取决于信息效用的其他方面,特别是系统推荐的多样性和新颖性[9、19、25、33]。更具体地说,过于大众和单调的推荐,即使推荐是准确的,通常也没有多大用处,因为它们不会让用户体验到前所未有的体验。


Increasing novelty and diversity by completely giving up on accuracy is straight forward and meaningless, since the system will not meet the users needs anymore. In fact, there is an apparent trade-off between these dimensions, which becomes evident by inspecting the performance of existing top-N recommendation algorithms. An easy conclusion is that different algorithms may perform distinctly depending on the dimension of interest (i.e., the best performer in terms of accuracy is not the best one in terms of novelty and diversity), and thus it is hard to point to a best performer if all the dimensions are considered simultaneously. A conclusion which is harder to reach is whether these algorithms are indeed complementary, so that the strengths of an algorithm may compensate the weaknesses of others. The potential synergy between different recommendation algorithms is of great importance to multi-objective recommender systems, since they must achieve a proper level of each dimension (i.e., objective).

完全放弃精确性来增加新颖性和多样性是毫无意义的,因为系统将不再满足用户的需求。事实上,这些维度之间存在明显的折衷,通过研究现有top-N推荐算法的表现可以明显看出这一点。一个简单的结论是,不同的算法可以明显地根据感兴趣的维度来执行(即,一个算法无法同时在准确性、新颖性和多样性方面表现最好),因此,如果同时考虑所有维度,很难指出表现最好的算法。一个更难得出的结论是,这些算法是否真的是互补的,因此一个算法的优点可以弥补其他算法的缺点。不同推荐算法之间的协同作用对于多目标推荐系统来说是非常重要的,因为它们必须达到每个维度(即目标)的适当水平。


In this paper we hypothesize that it is possible to properly aggregate different recommendation algorithms, so that the resulting hybrids balances the level of accuracy, diversity and novelty in its suggestions. In this case, each potential hybrid is given as a weighted combination of well-established recommendation algorithms (e.g., simple algorithms as well as representative of the state-of-the-art). Our proposed hybridization approach consists in finding appropriate weights for the constituent algorithms. By considering each dimension (i.e., accuracy, novelty and diversity) as a separate objective, we reduce the hybridization task to a multi-objective optimization problem, in which we search for the optimal combination of weights that maximizes accuracy, diversity and novelty.

在本文中,我们假设可以适当地聚合不同的推荐算法,从而使产生的混合算法在其推荐的准确性、多样性和新颖性方面达到平衡。在这种情况下,每一个潜在的混合体都是作为一个已有推荐算法(例如,简单算法以及最新技术的代表)的加权组合给出的。我们提出的混合方法是为组成算法寻找合适的权重。将每个维度(准确性、新颖性和多样性)作为一个独立的目标,将混合任务简化为一个多目标优化问题,在该问题中,我们寻找权重的最佳组合,以使准确性、多样性和新颖性最大化。


Since the considered objectives are potentially conflicting, we employ an evolutionary search for optimal hybrids. Evolutionary algorithms denote a class of optimization methods that are characterized by a set of candidate solutions (aka individuals) called a population, which is maintained during the entire optimization process. The population of individuals evolves towards better (and potentially optimal) solutions by employing genetic operators, such as reproduction, mutation and crossover. In our context, each individual represents a possible combination of weights (i.e., a possible hybrid). Optimal hybrids lie in the so-called Pareto frontier [37], and are optimal in the sense that no hybrid in the frontier can be improved upon without hurting at least one of its objectives. Therefore, the evolutionary algorithm evolves the population towards producing hybrids that are located closer to the Pareto frontier, and then a linear search returns the most dominant hybrid [37], which is likely to balance accuracy, novelty and diversity. Alternatively, hybrids in the Pareto frontier can be selected according to a certain need, allowing the recommender system to adjust the compromise between accuracy, novelty and diversity, so that the recommendation emphasis can be adapted dynamically according to the needs of each user (i.e., new users may benefit more from more accurate suggestions, whereas older users may require more novel and diversified suggestions).

由于这些目标是潜在冲突的,我们采用进化搜索来优化混合推荐。进化算法是指在整个优化过程中以一组称之为种群的候选解(即个体)为特征的优化方法。种群通过使用遗传算子,如繁殖、变异和交叉,向更好(和潜在最优)的解决方案进化。就我们而言,每个个体代表可能的权重组合(即,可能的混合)。最优群体存在于所谓的帕累托前沿[37],并且是最优的,因为帕累托前沿的群体在不损害其至少一个目标的情况下是无法改进的。因此,进化算法将种群进化为更靠近帕累托前沿的群体,然后线性搜索返回最主要的混合体[37],这可能平衡准确性、新颖性和多样性。或者,帕累托前沿的混合体可以根据特定的需要进行选择,使得推荐系统能够调整准确性、新颖性和多样性之间的折衷,从而可以根据每个用户的需要动态地调整推荐重点(即,新用户可能会从更准确的推荐中受益,而老用户可能需要更新颖和多样化的推荐)。


We conducted a systematic evaluation involving different recommendation scenarios, with explicit user feedback (i.e., movies from the MovieLens dataset), as well as implicit user feedback (i.e., artists from the LastFM dataset). The experiments showed that it is possible to (i) combine different algorithms in order to produce better recommendations and (ii) control the desired balance between accuracy, novelty and diversity. In order to evaluate the baseline algorithms and our hybrids, we used the methodology for top-N evaluation proposed in [12] and measured novelty and diversity using the framework proposed in [33].

我们对不同的推荐场景进行了系统的评估,包括明确的用户反馈(即来自MovieLens数据集的电影)和隐含的用户反馈(即来自LastFM数据集的艺术家)。实验表明,我们可以:(i)将不同的算法结合起来以产生更好的推荐,以及(ii)在准确性、新颖性和多样性之间控制所需的平衡是可能的。为了评估基线算法和我们的混合算法,我们使用了[12]中提出的top-N评估方法,并使用[33]中提出的框架测量新颖性和多样性。

 

2. PRELIMINARIES 预备知识


In this section we review the main concepts about evolutionary algorithms and multi-objective optimization. Finally, we discuss related work on hybrid and multi-objective recommender systems.

在这一部分,我们回顾了进化算法和多目标优化的主要概念。最后,讨论了混合多目标推荐系统的相关工作。


2.1 Evolutionary Algorithms 进化算法


Evolutionary algorithms are meta-heuristic optimization techniques that follow processes such as inheritance and evolution as key components in the design and implementation of computer-based problem solving systems [15, 20]. In evolutionary algorithms, a solution to a problem is represented as an individual in a population pool. The individuals may be represented as different data structures, such as vectors, threes, or stacks [26]. If the individual is represented as a vector, for example, each position in the vector is called a gene.
Typically, evolutionary algorithms employ a training and a validation set, as described in Algorithm 1. Initially, the population starts with individuals created randomly (line 6). The evolutionary process is composed of a sequence of solution generations. The process evolves generation by generation through genetic operations (lines 7-12). The goal of this process is to obtain better solutions after some generations. A fitness function is used to assign a fitness value to each individual (line 9), which represents its performance on the training set or in a cross validation set. To produce a new generation, genetic operators are applied to individuals with the aim of creating more diverse and better individuals (line 12). Typical operators include reproduction, mutation, and crossover.

进化算法是继遗传和进化等过程之后的元启发式优化技术,是设计和实现基于计算机的问题解决系统的关键组成部分[15,20]。在进化算法中,问题的解被表示为种群中的个体。个体可以表示为不同的数据结构,例如向量、三纬或堆栈[26]。例如,如果个体被表示为一个向量,那么向量中的每个位置都称为一个基因。

通常,进化算法采用训练和验证集,如算法1所述。最初,种群是从随机创建的个体开始的(第6行)。进化过程是由一系列的解生成过程组成的。这个过程通过遗传操作一代一代地进化(第7-12行)。这个过程的目标是在几代人之后获得更好的解决方案。fitness函数用于为每个个体(第9行)分配一个fitness值,该值表示其在训练集或交叉验证集中的性能。为了产生新一代,遗传算子被应用于个体,目的是创造更多样化和更好的个体(第12行)。典型的操作包括复制、变异和交叉。


2.2 Multi-Objective Optimization 多目标优化


Since we are interested in maximizing three different objectives for the sake of recommender systems (i.e. accuracy, novelty, and diversity), we use a multi-objective evolutionary algorithm. In multi-objective optimization problems there is a set of solutions that are superior to the remainder when all the objectives are considered together. In general, traditional approaches to multi-objective optimization problems are very limited because they become too expensive as the size of the problem grows [8]. Multi-objective evolutionary algorithms are a suitable option to overcome such an issue. Typically, multi-objective evolutionary algorithms are classified as Pareto or non-Pareto [37]. In the non-Pareto optimization case, the objectives are combined into a single evaluation value that is used as fitness value (i.e., average of the objectives). In Pareto algorithms, on the other hand, a vector of objective values is used (i.e., the individual is given as an objective vector). The evaluation of Pareto approaches follows the Pareto dominance concept. An individual dominates another if it performs better in at least one of the objectives c

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值