论文阅读:A Pareto-Efficient Algorithm for Multiple Objective Optimization in E-Commerce Recommendation

解决的问题:多任务训练不容易达到最优

思路:解决帕累托(pareto)最优问题

方法:

目标函数为多任务损失函数加权:

每个batch step分成两步:

1、固定w,用sgd降低Li;

2、固定del(theta),调整w。

 

第一步就是正常的梯度下降,关键在于第二步。

第二步的目标函数是:

这个目标其实就是从前面那个目标函数最优化到KKT条件来的。

 

这个方法的效果在于:

如果wi对应的任务,在某一次sgd中的梯度比较大,那么wi就会调整为比较大的值,那么下一次梯度下降的时候,该任务的权重就增加。

问题是:

为什么不用计算得到的wi决定本次sgd的加权梯度呢?

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值