python KMeans算法学习

这里,使用scikit-learn模块中的聚类算法包KMeans, 仅支持欧几里得距离,默认初始点采用随机选取,也可使用k-means++(聚类中心点之间相距很远)方式选取初始点, 支持并发聚类.
在UCI下载小型数据集 Data_User_Modeling_Dataset_Hamdi Tolga KAHRAMAN,生成聚类模型并测试,绘制聚类结果散点图.聚类结果评估.

import pandas as pd
from sklearn.cluster import KMeans
import numpy as np
import matplotlib.pyplot as plt


#----------------绘制聚类后的概率图------------------

def density_plot(data,res):
    plt.figure()
    j=
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值