卷积神经网络模型解读汇总——LeNet5,AlexNet、ZFNet、VGG16、GoogLeNet和ResNet

本文介绍了卷积神经网络发展中的六个经典模型,包括LeNet5、AlexNet、ZFNet、VGG16、GoogLeNet和ResNet。每个模型的特点、改进之处及对后续研究的影响进行了详细解析,如AlexNet的数据增强和ReLU激活函数,以及ResNet的残差结构解决深度退化问题。
摘要由CSDN通过智能技术生成

  在我的个人博客上一篇博文中分析了卷积神经网络的结构与相关算法,知道了这些基本原理之后。这篇博文主要介绍在卷积神经网络的发展历程中一些经典的网络模型。

LeNet5

  LeCun等将BP算法应用到多层神经网络中,提出LeNet-5模型[1](效果和paper见此处),并将其用于手写数字识别,卷积神经网络才算正式提出。LeNet-5的网络模型如图1所示。网络模型具体参数如图2所示。

enter description here

图1 LeNet-5网络模型
表1 LeNet-5具体参数

enter description here
输入:32*32的手写字体图片,这些手写字体包含0~9数字,也就是相当于10个类别的图片;
输出:分类结果,0~9之间。
  从输入输出可以知道,改网络解决的是一个十分类的问题,分类器使用的Softamx回归。

  • C1:卷积核参数如表所示。卷积的后的尺寸计算公式为:
    outHeight=(inHeight+2padfilterH
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值