在我的个人博客上一篇博文中分析了卷积神经网络的结构与相关算法,知道了这些基本原理之后。这篇博文主要介绍在卷积神经网络的发展历程中一些经典的网络模型。
LeNet5
LeCun等将BP算法应用到多层神经网络中,提出LeNet-5模型[1](效果和paper见此处),并将其用于手写数字识别,卷积神经网络才算正式提出。LeNet-5的网络模型如图1所示。网络模型具体参数如图2所示。
图1 LeNet-5网络模型
表1 LeNet-5具体参数
输入:32*32的手写字体图片,这些手写字体包含0~9数字,也就是相当于10个类别的图片;
输出:分类结果,0~9之间。
从输入输出可以知道,改网络解决的是一个十分类的问题,分类器使用的Softamx回归。
- C1:卷积核参数如表所示。卷积的后的尺寸计算公式为:
outHeight=(inHeight+2pad−filterH