矩阵基础4-线性方程组详解

本文介绍了线性方程组和矩阵的基本概念,包括线性方程组的解、增广矩阵、Gauss消去法以及解的个数判断。此外,还探讨了向量的性质,如线性组合、向量组的秩和线性相关性。通过具体例子解释了如何利用矩阵秩来确定方程组解的情况,并提及了使用软件求解线性方程组的方法。
摘要由CSDN通过智能技术生成

一. 线性方程组和矩阵

1.1 线性方程组

image.png

1.2 线性方程组的解

初中学的二元一次方程的解,有可能无解,有可能有唯一解,有可能有多个解。
image.png

1.3 矩阵与线性方程组

image.png

1.4 线性方程组的增广矩阵

看了下,其实就是把 线性方程组的值加入了了矩阵
image.png

1.5 Gauss消去法

就是初中学的二元一次方程
左右两边同时乘以一个数,然后与其它方程相加减,去掉x或y,最后就可以计算出x,y的值。
在这里插入图片描述

image.png

求解非齐次方程组
image.png

image.png

1.6 线性方程组解的个数

线性方程组的解
image.png

image.png

image.png

线性方程组解的个数:
rank(A|B) 代表 矩阵 A的增广矩阵 A|B的 秩
矩阵的秩通过R可以求出来,那么我就知道这个方程解的个数了。

至于为什么要 rank(A|B) = rank(B)
其实就是要把矩阵下面的行置为零(相当于消解二元(多元)一次方程的的个数)。

  1. rank(A|B)=n,这个地方的n代表未知的变量的个数,方程是唯一解
  2. rank(A|B)<n, 剩余表达式的个数小于变量的个数,方程有无数个解

rank(A|B) > rank(B) 类似会出现 2x + 3 = 0,这种,所以无解。
image.png

例:
image.png
image.png

二. 向量

2.1 n维向量

向量可以理解为 平面上的一条直线,由x轴和y轴对应的数值组成的(也可以理解为一个矩阵)。
image.png
image.png

列向量组:
在这里插入图片描述

行向量组:
image.png

2.2 向量相等

image.png

2.3 向量的线性运算

image.png

image.png

2.4 向量的线性组合

image.png
image.png
image.png

2.5 向量组等价

image.png

2.6 向量的线性相关性

image.png

在这里插入图片描述

2.7 向量组的秩

image.png
image.png

三. 利用软件解线性方程组

求解如下线性方程组:
x 1 + 2 x 2 = 8 x_1 + 2x_2 = 8 x1+2x2=8
2 x 1 + 3 x 2 = 13 2x_1 + 3x_2 = 13 2x1+3x2=13

a = matrix(c(1,2,2,3),nr=2,nc=2,byrow=T)
b = matrix(c(8,13),nr=2,nc=1)
solve(a,b)
image.png

参考:

  1. http://www.dataguru.cn/article-4621-1.html
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值