文章目录
一. 线性方程组和矩阵
1.1 线性方程组
1.2 线性方程组的解
初中学的二元一次方程的解,有可能无解,有可能有唯一解,有可能有多个解。
1.3 矩阵与线性方程组
1.4 线性方程组的增广矩阵
看了下,其实就是把 线性方程组的值加入了了矩阵
1.5 Gauss消去法
就是初中学的二元一次方程
左右两边同时乘以一个数,然后与其它方程相加减,去掉x或y,最后就可以计算出x,y的值。
求解非齐次方程组
1.6 线性方程组解的个数
线性方程组的解
线性方程组解的个数:
rank(A|B) 代表 矩阵 A的增广矩阵 A|B的 秩
矩阵的秩通过R可以求出来,那么我就知道这个方程解的个数了。
至于为什么要 rank(A|B) = rank(B)
其实就是要把矩阵下面的行置为零(相当于消解二元(多元)一次方程的的个数)。
- rank(A|B)=n,这个地方的n代表未知的变量的个数,方程是唯一解
- rank(A|B)<n, 剩余表达式的个数小于变量的个数,方程有无数个解
rank(A|B) > rank(B) 类似会出现 2x + 3 = 0,这种,所以无解。
例:
二. 向量
2.1 n维向量
向量可以理解为 平面上的一条直线,由x轴和y轴对应的数值组成的(也可以理解为一个矩阵)。
列向量组:
行向量组:
2.2 向量相等
2.3 向量的线性运算
2.4 向量的线性组合
2.5 向量组等价
2.6 向量的线性相关性
2.7 向量组的秩
三. 利用软件解线性方程组
求解如下线性方程组:
x
1
+
2
x
2
=
8
x_1 + 2x_2 = 8
x1+2x2=8
2
x
1
+
3
x
2
=
13
2x_1 + 3x_2 = 13
2x1+3x2=13
a = matrix(c(1,2,2,3),nr=2,nc=2,byrow=T)
b = matrix(c(8,13),nr=2,nc=1)
solve(a,b)
参考:
- http://www.dataguru.cn/article-4621-1.html