背包九讲(附Cpp代码)

这篇博客详细讲解了01背包、完全背包、多重背包、混合三种背包、二维费用的背包、分组背包、有依赖的背包、泛化物品和背包问题的变化等九种背包问题,并附带了每种问题的C++代码实现和测试文件,是学习和理解背包问题的好资料。
摘要由CSDN通过智能技术生成

文档链接:

http://love-oriented.com/pack/pack2alpha1.pdf

1. 01背包

1)题目:
有n件物品和一个容量为v的背包。
第i件物品的费用是c[i],价值是w[i]。
求解将哪些物品装入背包可使价值总和最大
2)输入:
测试用例数 
物品数 背包大小 
n个物品的ci和wi
3)代码:
#include <iostream>  
#include <cstring>  
#include <algorithm>  
using namespace std;  
#define maxV 1000  
  
int main(void) {  
    int times, n, v, ci, wi;  
    int f[maxV];  
    freopen("1.txt", "r", stdin);  
    cin >> times;  
    while (times--) {  
        memset(f, 0, sizeof(f));  
        cin >> n >> v;  
        for (int i = 0; i < n; i++) {  
            cin >> ci >> wi;  
            for (int j = v; j >= 0; j--) {  
                if (j >= ci)  
                    f[j] = max(f[j - ci] + wi, f[j]);  
            }  
        }  
        for (int i = 0; i <= v; i++) cout << f[i] << " ";  
        cout << endl;  
        cout << f[v] << endl;  
    }  
} 
4)测试文件:
2  
4 10  
2 4  
3 5  
4 6  
5 10  
  
5 20  
3 2  
7 3  
10 5  
15 6  
16 10 

2. 完全背包

1)题目:
有n件物品和一个容量为v的背包,每种物品都有无限件可用。
第i种物品的费用是c[i],价值是w[i]。
求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。
2)输入:
测试用例数 
物品数 背包容量
n个物品的ci和vi
3)代码:
#include <iostream>  
#include <cstring>  
#include <algorithm>  
  
using namespace std;  
#define maxV 1000  
  
int main(void) {  
    int cases, n, v, ci, wi;  
    int f[maxV];  
    freopen("2.txt", "r", stdin);  
    cin >> cases;  
    while (cases--) {  
        memset(f, 0, sizeof(f));  
        cin >> n >> v;  
        for (int i = 0; i < n; i++) {  
            cin >> ci >> wi;  
            for (int j = 0; j <= v; j++) {  
                if (j >= ci)  
                    f[j] = max(f[j], f[j - ci] + wi);  
            }  
        }  
        cout << f[v] << endl;  
    }  
}  

4)测试文件:
[plain]  view plain  copy
  1. 2  
  2. 4 10  
  3. 2 4  
  4. 3 5  
  5. 4 6  
  6. 5 10  
  7.   
  8. 5 20  
  9. 3 2  
  10. 7 3  
  11. 10 5  
  12. 15 6  
  13. 16 10  


3. 多重背包

1)题目:
有n种物品和一个容量为v的背包。
第i种物品最多有n[i]件可用,每件费用是c[i],价值是w[i]。
求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。
2)输入:
测试用例数 
物品数 背包容量
n个物品的ni ci wi
3)代码:
[cpp]  view plain  copy
  1. #include <iostream>  
  2. #include <algorithm>  
  3. using namespace std;  
  4. #define maxV 1000  
  5.   
  6. int f[maxV], v;  
  7.   
  8. void ZeroOnePack(int ci, int wi) {  
  9.     for (int j = v; j >= 0; j--)   
  10.         if (j >= ci)  
  11.             f[j] = max(f[j], f[j - ci] + wi);  
  12. }  
  13.   
  14. void CompletePack(int ci, int wi) {  
  15.     for (int j = 0; j <= v; j++)   
  16.         if (j >= ci)  
  17.             f[j] = max(f[j], f[j - ci] + wi);  
  18. }  
  19.   
  20. void MultiplePack(int ni, int ci, int wi) {  
  21.     if (ni * ci >= v) {  
  22.         CompletePack(ci, wi);  
  23.         return;  
  24.     }  
  25.     int k = 1, amount = ni;  
  26.     while (k < ni) {  
  27.         ZeroOnePack(ci * k, wi * k);  
  28.         amount -= k;  
  29.         k *= 2;  
  30.     }  
  31.     ZeroOnePack(ci * amount, wi * amount);  
  32. }  
  33.   
  34. int main(void) {  
  35.     int cases, n, ni, ci, wi;  
  36.     freopen("3.txt""r", stdin);  
  37.     cin >> cases;  
  38.     while (cases--) {  
  39.         memset(f, 0, sizeof(f));  
  40.         cin >> n >> v;  
  41.         for (int i = 0; i < n; i++) {  
  42.             cin >> ni >> ci >> wi;  
  43.             MultiplePack(ni, ci, wi);  
  44.         }  
  45.         //for (int i = 0; i <= v; i++) cout << f[i] << " "; cout << endl;  
  46.         cout << f[v] << endl;  
  47.     }  
  48. }  

4)测试文件:
[plain]  view plain  copy
  1. 2   
  2. 3 10  
  3. 1 1 10  
  4. 2 2 4  
  5. 3 3 11  
  6.   
  7. 4 20  
  8. 5 2 5  
  9. 2 3 6  
  10. 3 4 8  
  11. 1 6 19  


4. 混合三种背包

1)问题:
有的物品只可以取一次(01背包),有的物品可以取无限次(完全背包),有的物品可以取的次数有一个上限(多重背包)。
应该怎么求解呢?
2)输入:
测试用例数
物品数 背包容量
第i种物品的ni(无限次的标为-1) ci wi
3)代码:
[cpp]  view plain  copy
  1. #include <iostream>  
  2. #include <cstring>  
  3. using namespace std;  
  4. #define maxV 1000  
  5.   
  6. int f[maxV], v;  
  7.   
  8. void ZeroOnePack(int ci, int wi) {  
  9.     for (int j = v; j >= 0; j--)   
  10.         if (j >= ci)  
  11.             f[j] = max(f[j], f[j - ci] + wi);  
  12. }  
  13.   
  14. void CompletePack(int ci, int wi) {  
  15.     for (int j = 0; j <= v; j++)   
  16.         if (j >= ci)  
  17.             f[j] = max(f[j], f[j - ci] + wi);  
  18. }  
  19.   
  20. void MultiplePack(int ni, int ci, int wi) {  
  21.     if (ni * ci >= v) {  
  22.         CompletePack(ci, wi);  
  23.         return;  
  24.     }  
  25.     int k = 1, amount = ni;  
  26.     while (k < ni) {  
  27.         ZeroOnePack(ci * k, wi * k);  
  28.         amount -= k;  
  29.         k *= 2;  
  30.     }  
  31.     ZeroOnePack(ci * amount, wi * amount);  
  32. }  
  33.   
  34. int main(void) {  
  35.     int cases, n, ni, ci, wi;  
  36.     freopen("4.txt""r", stdin);  
  37.     cin >> cases;  
  38.     while (cases--) {  
  39.         memset(f, 0, sizeof(f));  
  40.         cin >> n >> v;  
  41.         for (int i = 0; i < n; i++) {  
  42.             cin >> ni >> ci >> wi;  
  43.             if (ni == 1) ZeroOnePack(ci, wi);  
  44.             else if (ni == -1) CompletePack(ci, wi);  
  45.             else MultiplePack(ni, ci, wi);  
  46.         }  
  47.         for (int i = 0; i <= v; i++) cout << f[i] << " "; cout << endl;  
  48.         cout << f[v] << endl;  
  49.     }  
  50. }  

4)测试文件:
[plain]  view plain  copy
  1. 2  
  2. 3 10  
  3. -1 1 2  
  4. 2 2 5  
  5. 1 3 7  
  6.   
  7. 4 20  
  8. 3 2 5  
  9. 4 4 6  
  10. -1 6 8  
  11. 1 7 10  


5. 二维费用的背包

1)问题:
对于每件物品,具有两种不同的费用;
选择这件物品必须同时付出这两种代价;
对于每种代价都有一个可付出的最大值(背包容量)。
问怎样选择物品可以得到最大的价值。
第i件物品所需的两种代价分别为a[i]和b[i]。
两种代价可付出的最大值(两种背包容量)分别为V和U。物品的价值为w[i]。
2)输入:
测试用例数
物品数 第一个背包容量v 第二个背包容量u
第i个物品的ai bi wi
3)代码:
[cpp]  view plain  copy
  1. #include <iostream>  
  2. #include <cstring>  
  3. #include <algorithm>  
  4.   
  5. using namespace std;  
  6. #define maxV 1000  
  7. #define maxU 1000  
  8.   
  9. int main(void) {  
  10.     int cases, n, v, u, ai, bi, wi;  
  11.     int f[maxV][maxU];  
  12.     freopen("5.txt""r", stdin);  
  13.     cin >> cases;  
  14.     while (cases--) {  
  15.         memset(f, 0, sizeof(f));  
  16.         cin >> n >> v >> u;  
  17.         for (int i = 0; i < n; i++) {  
  18.             cin >> ai >> bi >> wi;  
  19.             for (int j = v; j >= 0; j--) {  
  20.                 for (int k = u; k >= 0; k--) {  
  21.                     if (ai <= j && bi <= k)  
  22.                         f[j][k] = max(f[j][k], f[j - ai][k - bi] + wi);  
  23.                 }  
  24.             }  
  25.         }  
  26.         cout << f[v][u] << endl;  
  27.     }  
  28. }  
4)测试文件:
[plain]  view plain  copy
  1. 2  
  2. 3 10 5  
  3. 1 2 4  
  4. 2 1 4  
  5. 4 4 6  
  6.   
  7. 4 5 6  
  8. 1 1 3  
  9. 1 2 4  
  10. 2 1 4  
  11. 3 4 7  



6. 分组背包

1)问题:
有n件物品和一个容量为v的背包。
第i件物品的费用是c[i],价值是w[i]。
这些物品被划分为若干组,每组中的物品互相冲突,最多选一件。
求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。
2)输入:
测试用例数 
物品数 背包容量 组数g(组号范围:0 ~ g-1)
第i件物品的ci wi gi(所属组号)
3)代码:
[cpp]  view plain  copy
  1. #include <iostream>  
  2. #include <cstring>  
  3. #include <vector>  
  4. #include <algorithm>  
  5.   
  6. using namespace std;  
  7. #define maxV 1000  
  8. #define maxG 100  
  9. #define maxN 100  
  10.   
  11. int main(void) {  
  12.     int cases, n, v, g, gi;  
  13.     int f[maxV];  
  14.     int ci[maxN], wi[maxN];  
  15.     freopen("6.txt""r", stdin);  
  16.     cin >> cases;  
  17.     while (cases--) {  
  18.         memset(f, 0, sizeof(f));  
  19.         cin >> n >> v >> g;  
  20.         vector<vector<int> > gMap(g);  
  21.         for (int i = 0; i < n; i++) {  
  22.             cin >> ci[i] >> wi[i] >> gi;  
  23.             gMap[gi].push_back(i);  
  24.         }  
  25.   
  26.         for (int i = 0; i < g; i++) {  
  27.             for (int j = v; j >= 0; j--) {  
  28.                 for (int k = 0; k < gMap[i].size(); k++) {  
  29.                     if (j >= ci[gMap[i][k]])  
  30.                         f[j] = max(f[j], f[j - ci[gMap[i][k]]] + wi[gMap[i][k]]);  
  31.                 }  
  32.             }  
  33.         }  
  34.   
  35.         cout << f[v] << endl;  
  36.     }  
  37. }  

4)测试文件:
[plain]  view plain  copy
  1. 2  
  2. 4 10 2  
  3. 3 5 0  
  4. 4 6 0  
  5. 2 7 1  
  6. 1 6 1  
  7.   
  8. 5 10 3  
  9. 1 3 0  
  10. 2 4 0  
  11. 3 5 1  
  12. 4 7 1  
  13. 5 8 2  


7. 有依赖的背包

1)题目:
这种背包问题的物品间存在某种“依赖”的关系。
也就是说,i依赖于j,表示若选物品i,则必须选物品j。
为了简化起见,我们先设没有某个物品既依赖于别的物品,又被别的物品所依赖;
另外,没有某件物品同时依赖多件物品。
2)输入:
测试用例数 
物品数 背包大小
第i个物品的ci wi di(依赖物品的编号,-1为不依赖其他物品)
3)代码:
[cpp]  view plain  copy
  1. #include <iostream>  
  2. #include <vector>  
  3. #include <cstring>  
  4. #include <algorithm>  
  5.   
  6. using namespace std;  
  7. #define maxV 1000  
  8. #define maxG 100  
  9.   
  10. int main(void) {  
  11.     int cases, n, v, ci[maxV], wi[maxV], di, f[maxV];  
  12.     freopen("7.txt""r", stdin);  
  13.     cin >> cases;  
  14.     while (cases--) {  
  15.         memset(f, 0, sizeof(f));  
  16.         cin >> n >> v;  
  17.           
  18.         // group[i]空表示i号物品有依赖,因此存放到其他组里  
  19.         // 只有一个元素表示i号物品既无依赖也不被依赖  
  20.         // 有多个元素表示i号物品被依赖,这里自己的编号i也被存放进group[i]  
  21.         vector<vector<int> > groups(n);   
  22.   
  23.         // 读入数据并储存起来  
  24.         for (int i = 0; i < n; i++) {  
  25.             cin >> ci[i] >> wi[i] >> di;  
  26.             if (di == -1) groups[i].push_back(i);  
  27.             else groups[di].push_back(i);  
  28.         }  
  29.   
  30.         // 对每个有多个元素的组进行01背包  
  31.         for (int i = 0; i < n; i++) {  
  32.             if (groups[i].size() > 1) {  
  33.                 vector<int> giOri; //group[i]的拷贝,排除i本身  
  34.                 int newV = v - ci[i];  
  35.   
  36.                 // 复制group[i]中的元素,排除i  
  37.                 for (int j = 0; j < groups[i].size(); j++) {  
  38.                     if (groups[i][j] != i)  
  39.                         giOri.push_back(groups[i][j]);  
  40.                 }  
  41.   
  42.                 // 把等效物品组存入group[i]中  
  43.                 groups[i].clear();  
  44.                 groups[i].resize(newV + 1, 0);  
  45.                 for (int j = 0; j < giOri.size(); j++) {  
  46.                     for (int k = newV; k >= 0; k--) {  
  47.                         if (ci[giOri[j]] <= k) {  
  48.                             groups[i][k] = max(groups[i][k], groups[i][k - ci[giOri[j]]] + wi[giOri[j]]);  
  49.                         }  
  50.                     }  
  51.                 }  
  52.             }  
  53.         }  
  54.   
  55.         // 进行分组背包  
  56.         for (int i = 0; i < n; i++) {  
  57.             if (groups[i].size() == 0) continue;  
  58.             else if (groups[i].size() == 1) { // i物品无依赖且不被依赖  
  59.                 for (int j = v; j >=0; j--) {  
  60.                     if (j >= ci[i])  
  61.                         f[j] = max(f[j], f[j - ci[i]] + wi[i]);  
  62.                 }  
  63.             } else { // i物品被依赖, i组第k个物品的cost为k + ci[i], weight为group[i][k] + wi[i]  
  64.                 for (int j = v; j >= 0; j--) {   
  65.                     for (int k = 0; k < groups[i].size(); k++) {  
  66.                         if (j >= k + ci[i])  
  67.                             f[j] = max(f[j], f[j - k - ci[i]] + groups[i][k] + wi[i]);  
  68.                     }  
  69.                 }  
  70.             }  
  71.         }  
  72.           
  73.         cout << f[v] << endl;  
  74.     }  
  75. }  

4)测试文件:
[plain]  view plain  copy
  1. 2  
  2. 3 10  
  3. 3 5 -1  
  4. 4 6 0  
  5. 7 10 0  
  6.   
  7. 4 15  
  8. 4 1 -1  
  9. 6 8 0  
  10. 7 10 0  
  11. 10 4 -1  


8. 泛化物品

1)题目:
在背包容量为v的背包问题中,泛化物品是一个定义域为0..v中的整数的函数h,当分配给它的费用为v时,能得到的价值就是h(v)。
为了应用泛化物品思想,这里假设题目为:存在依赖关系树(简单起见,只有一个根节点),即有依赖的物品也可以被依赖,可结合原文7.3节来理解此句。
2)输入:
测试用例数
物品数 背包容量 根节点编号
第i个物品的ci wi di(依赖物品的编号,-1为不依赖其他物品)
3)代码:
[cpp]  view plain  copy
  1. #include <iostream>  
  2. #include <algorithm>  
  3. using namespace std;  
  4. #define maxN 100  
  5. #define maxV 1000  
  6.   
  7. int n, v;  
  8. int cnt = 0;  
  9. int head[maxN];  
  10. int wi[maxN], ci[maxN];  
  11. int f[maxN][maxV];  
  12.   
  13. struct Edge {  
  14.     int v, next;  
  15. } e[maxN - 1];  
  16.   
  17. void addEdge(int u, int v) {  
  18.     e[cnt].v = v;  
  19.     e[cnt].next = head[u];  
  20.     head[u] = cnt++;  
  21. }  
  22.   
  23. void treeDP(int u) {  
  24.     for (int i = ci[u]; i <= v; i++) {  
  25.         f[u][i] = wi[u];  
  26.     }  
  27.     for (int i = head[u]; i != -1; i = e[i].next) {  
  28.         int curr = e[i].v;  
  29.         treeDP(curr);  
  30.         for (int j = v; j >= 0; j--) {  
  31.             for (int k = j - ci[u]; k >= 0; k--) {  
  32.                 f[u][j] = max(f[u][j], f[u][j - k] + f[curr][k]);  
  33.             }  
  34.         }  
  35.     }  
  36. }  
  37.   
  38. int main(void) {  
  39.     int cases, root;  
  40.     freopen("8.txt""r", stdin);  
  41.     cin >> cases;  
  42.     while (cases--) {  
  43.         cnt = 0;  
  44.         memset(head, -1, sizeof(head));  
  45.         memset(f, 0, sizeof(f));  
  46.         cin >> n >> v >> root;  
  47.         for (int i = 0; i < n; i++) {  
  48.             int di;  
  49.             cin >> ci[i] >> wi[i] >> di;  
  50.             addEdge(di, i);  
  51.         }  
  52.         treeDP(root);  
  53.         cout << f[root][v] << endl;  
  54.     }  
  55. }  

4)测试文件:
[plain]  view plain  copy
  1. 2  
  2. 5 5 0  
  3. 1 2 -1  
  4. 2 7 0  
  5. 2 5 0  
  6. 2 6 2  
  7. 1 4 2  
  8.   
  9. 6 5 0  
  10. 1 2 -1  
  11. 1 3 0  
  12. 2 3 0  
  13. 2 4 0  
  14. 2 7 2  
  15. 3 10 2  


9. 背包问题的变化

1)题目:
输出01背包的具体方案
2)输入:
同01背包
3)代码:
[cpp]  view plain  copy
  1. #include <iostream>  
  2. #include <algorithm>  
  3. using namespace std;  
  4. #define maxV 1000  
  5. #define maxN 100  
  6.   
  7. int main(void) {  
  8.     int cases, n, v, ci[maxN], wi;  
  9.     int f[maxV];  
  10.     bool g[maxN][maxV]; //g[i][v]=0 表示没放i时的f(i, v)较大,  
  11.                         //g[i][v]=1 表示放进i时的f(i, v)较大  
  12.     freopen("9.txt""r", stdin);  
  13.     cin >> cases;  
  14.     while (cases--) {  
  15.         memset(f, 0, sizeof(f));  
  16.         memset(g, 0, sizeof(g));  
  17.         cin >> n >> v;  
  18.         for (int i = 0; i < n; i++) {  
  19.             cin >> ci[i] >> wi;  
  20.             for (int j = v; j >= 0; j--) {  
  21.                 if (j >= ci[i]) {  
  22.                     if (f[j - ci[i]] + wi > f[j]) {  
  23.                         f[j] = f[j - ci[i]] + wi;  
  24.                         g[i][j] = 1;  
  25.                     }  
  26.                 }  
  27.             }  
  28.         }  
  29.   
  30.         int i = n - 1, j = v;  
  31.         while (i >= 0) {  
  32.             if (g[i][j] == 1) {  
  33.                 cout << "选了" << i << endl;  
  34.                 j -= ci[i];  
  35.             } else {  
  36.                 cout << "没选" << i << endl;  
  37.             }  
  38.             i--;  
  39.         }  
  40.         cout << endl;  
  41.     }  
  42. }  
4)测试文件:
[plain]  view plain  copy
  1. 2  
  2. 4 10  
  3. 2 4  
  4. 3 5  
  5. 4 6  
  6. 5 10  
  7.   
  8. 5 20  
  9. 3 2  
  10. 7 3  
  11. 10 5  
  12. 15 6  
  13. 16 10  

参考: 参考1  参考2
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值