softmax变种或增强1:Large-Margin Softmax Loss for Convolutional Neural Networks

本博文转载自:https://blog.csdn.net/shaoxiaohu1/article/details/53325945

参考文献: Liu W, Wen Y, Yu Z, et al. Large-Margin Softmax Loss for Convolutional Neural Networks[C]//Proceedings of The 33rd International Conference on Machine Learning. 2016: 507-516.

摘要点击打开链接

Softmax Loss 函数经常在卷积神经网络被用到,较为简单实用,但是它并不能够明确引导网络学习区分性较高的特征。这篇文章提出了large-marin softmax (L-Softmax) loss, 能够有效地引导网络学习使得类内距离较小、类间距离较大的特征。同时,L-Softmax不但能够调节不同的间隔(margin),而且能够防止过拟合。可以使用随机梯度下降法推算出它的前向和后向反馈,实验证明L-Softmax学习出的特征更加有可区分性,并且在分类和验证任务上均取得比softmax更好的效果。

算法介绍

1. Softmax Loss回顾

在介绍L-Softmax之前,我们先来回顾下softmax loss。当定义第 ii 个输入特征 XiXi 以及它的标签 yiyi时,softmax loss 记为: 

L=1NiLi=1Nilog(efyijefj)L=1N∑iLi=1N∑i−log(efyi∑jefj)

其中  fjfj  表示最终全连接层的类别输出向量  ff  的第  jj  个元素,  NN  为训练样本的个数。由于  ff  是全连接层的激活函数  WW  的输出,所以  fyifyi  可以表示为  fyi=WTyixifyi=WyiTxi , 最终的损失函数又可以写为: 
Li=log(eWyixicos(θyi)jeWjxicos(θj))Li=−log(e‖Wyi‖‖xi‖cos(θyi)∑je‖Wj‖‖xi‖cos(θj))

其中  0θjπ0≤θj≤π 。 虽然softmax在深度卷积神经网络中有着广泛的应用,但是这种形式并不能够有效地学习得到使得类内较为紧凑、类间较离散的特征。

2. 动机

初始的softmax的目的是使得WT1x>WT2xW1Tx>W2Tx,即 W1xcos(θ1)>W2xcos(θ2)‖W1‖‖x‖cos(θ1)>‖W2‖‖x‖cos(θ2),从而得到 xx (来自类别1)正确的分类结果。作者提出large-magrin softmax loss的动机是希望通过增加一个正整数变量 mm,从而产生一个决策余量,能够更加严格地约束上述不等式,即: 

W1xcos(θ1)W1xcos(mθ1)>W2xcos(θ2)‖W1‖‖x‖cos(θ1)≥‖W1‖‖x‖cos(mθ1)>‖W2‖x‖cos(θ2)

其中 0θ1<πm0≤θ1<πm 。如果  W1W1  和  W2W2  能够满足 W1xcos(mθ1)>W2xcos(θ2)‖W1‖‖x‖cos(mθ1)>‖W2‖‖x‖cos(θ2) ,那么就必然满足 W1xcos(θ1)>W2xcos(θ2)‖W1‖‖x‖cos(θ1)>‖W2‖‖x‖cos(θ2) 。这样的约束对学习 W1W1  和  W2W2  的过程提出了更高的要求,从而使得1类和2类有了更宽的分类决策边界。

(其实说白了,基于softmax loss学习同类和不同类样本时,都用的是同一种格式,因此学习到的特征的类内和类间的可区分性不强。而这篇论文是在学习同类样本时,特意增强了同类学习的难度,这个难度要比不同类的难度要大些。这样的区别对待使得特征的可区分性增强。感觉就像是管孩子,对自己家的孩子严一些,对别人家的孩子宽容些,哈哈)

Large-Margin Softmax Loss

按照上节的思路,L-Softmax loss可写为: 

Li=log(eWyixiψ(θyi)Wyixiψ(θyi)+jyieWjxicos(θj))Li=−log(e‖Wyi‖‖xi‖ψ(θyi)‖Wyi‖‖xi‖ψ(θyi)+∑j≠yie‖Wj‖‖xi‖cos(θj))

在这里,ψ(θ)ψ(θ) 可以表示为: 

ψ(θ)={cos(mθ),0θπm(θ),πm<θπψ(θ)={cos(mθ),0≤θ≤πmD(θ),πm<θ≤π

当  mm  越大时,分类的边界越大,学习难度当然就越高。同时,公式中的  (θ)D(θ)  必须是一个单调减函数且  (πm)=cos(πm)D(πm)=cos(πm) , 以保证  ψ(θ)ψ(θ) 是一个连续函数。 (这样的要求是为了保证  ψ(θ)ψ(θ)  和  cos(θ)cos(θ)  是较为类似的函数,具体的数学原理我不是特别清楚)

作者为了能够简化前向和后向传播,构建了这样一种函数形式ψ(θ)ψ(θ): 

ψ(θ)=(1)kcos(mθ)2k,θ[kπm,(k+1)πm]ψ(θ)=(−1)kcos(mθ)−2k,θ∈[kπm,(k+1)πm]

其中  kk  是一个整数且  k[0,m1]k∈[0,m−1] 。下图是softmax loss 和L-Softmax loss的比较。

这里写图片描述

再使用 WTjxiWjxiWjTxi‖Wj‖‖xi‖ 替代 cos(θj)cos(θj), 以及将cos(mθyi)cos(mθyi)替换为 cos(θyi)cos(θyi) 和 mm 的函数(论文中已交待,太长,我就不敲上去了),这样,最终的L-Softmax loss 函数就可以分别对 xx 和 WW 进行求导。后续的推导过程可以参考原论文(公式太多,我又太懒)。

简单分析

为了简单明了地表明L-Softmax Loss的有效性,作者讨论了一个二分类问题,只包含 W1W1 和 W2W2。分析结果如下图所示。

这里写图片描述

在训练过程中,当 W1=W2W1=W2 时,softmax loss 要求 θ1<θ2θ1<θ2, 而 L-Softmax则要求mθ1<θ2mθ1<θ2,我们从图中可以看到L-Softmax得到了一个更严格的分类标准。当W1>W2W1>W2 和 W1<W2W1<W2 时,虽然情况会复杂些,但是同样可以看到L-Softmax会产生一个较大的决策余量。

实验结果

作者分别使用分类和人脸验证对softmax loss 和L-Softmax Loss进行了对比。在分类问题中,采用了MNIST, CIFAR10以及CIFAR100三个数据集进行评测,而人脸验证则采用了LFW进行验证。

最后的结果是L-Softmax Loss均取得了更好的效果,而且当mm 越大时,最终的结果会越好。特别值得一提的是,作者仅使用了 WebFace的人脸数据作为训练集和一个较小的卷积网络,就在LFW上达到了98.71%的正确率。 
这里写图片描述

总结

L-Softmax Loss有一个清楚的几何解释,并且能够通过设置 mm 来调节训练难度。它还能够有效地防止过拟合,能够有效地减小类内距离,同时增加类间距离。最终的分类和人脸验证实验也证明,它取得了比softmax loss更好的结果。

PS: 有同学已经开始使用L-Softmax Loss,不过反映训练难度比较大,需要反复调参。等有空了我也来试试。深度学习的东西我研究的时间也不是很长,一些东西没有理解到位。错误在所难免,欢迎拍砖。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值