LR2

下面来回顾一下嵌套循环例子。
复制代码
Action()
{
    int  i,j;   //生命两个变量
    for (i=1;i<=5;i++)   //第一重循环,循环5次
    {
        if (i==3)    
            break;   //当i等于3时,跳出本重循环
        else
             lr_output_message("i=%d",i);  //否则,输入i的值

        for (j=1;j<=5;j++)  //第二重循环,循环5次
        {
            if (j==2)   
                break;   //当j等于2时,跳出本重循环
            else
             lr_output_message("j=%d",j);  //否则,输入j的值
        }
    }
}
复制代码


运行结果:

复制代码
Starting iteration 1.
Starting action Action.
Action.c(9): i=1
Action.c(16): j=1
Action.c(9): i=2
Action.c(16): j=1
Ending action Action.
Ending iteration 1.
复制代码

 

函数                                                                                

复制代码
void SsyHello()  //打招呼函数
{
    lr_output_message("hello %s",lr_get_host_name());
}

int GetBigger(int x,int y)  //得到最大值函数
{
    if (x>y) {
        return x;
    }
    else{
        return y;
    }

}

Action(){
    int x=10,y=20, result;   //声明变量

    SsyHello();  //无形参,无返回值函数
    result = GetBigger(x,y);
    lr_output_message("GetBigger(%d,%d)=%d",x,y,result);  //带形参,带返回值函数

    return 0;
}
复制代码

 

上面的程序加注解了,简单来说就是前面定义了两个函数SsyHello() 和 GetBigger(),主函数Action()对前面两个函数进行调用。

运行结果:

复制代码
Starting iteration 1.
Starting action Action.
Action.c(4): hello 2011-20120624YO
Action.c(23): GetBigger(10,20)=20
Ending action Action.
Ending iteration 1.
复制代码

 

 

动态存储方式与静态存储方式                                               

  

  我们在定义变量是,根据定义的位置不同,分为全局变量与局部变量。我出生在一个叫“舞阳”的小县城,在这个县城中也有人名“舞阳”,前一个作用于整个县城,后一个只作用于他个人。那么从变量值的存在生存期角度,又可分为静态存储方式和动态存储方式两类。

静态存储方式:是指在程序运行期间分配固定的存储空间方式。

动态存储方式:是在程序运行期间根据需要进行动态的分配存储空间的方式。

 

用户存储空间可分三部分:

1、程序区

2、静态存储区

3、动态存储区

  全局变量全部存放在静态存储区,在程序开始执行时给全局变量分配存储区,程序运行完毕就释放,在程序执行过程中它们占据固定的存储单元,而不动态地进行分配和释放。

   动态存储区存放以下数据

(1)函数形式参数

(2)自动变量(未加static声明的局部变量)

(3)函数调用时的现场保护和返回地址

上面这些数据,在函数开始调用时分配动态空间,函数结果时释放这些空间。

C语言中,每个变量和函数有两个属性:数据类型和数据的存储类别

自动(auto)变量

函数中的局部变量,如不专门的声明为static存储类别,都是动态地分配存储空间的。

静态(static)声明局部变量

有时希望函数中的局部变量的值在函数调用结束后不消失而保留,这时就应该指定局部变量为“静态局部变量”,用static关键字。

*  寄存器(register)变量

为了提高效率,C语言允许把局部变量的值放在CPU中的寄存器中,这种变量叫“寄存器变量”,用关键字register变量。

复制代码
static int c;

int prime(register int number)   //判断是否为素数
{
    register int flag=1;
    auto int n;
    for (n=2;n<number/2 && flag==1;n++) {
        if (number % n==0) flag=0;
    return(flag);    
        
    }
}

demo(int a)    //static、auto变量的演示函数
{
    auto int b=0;
    int d;
    static c=3;
    b=b+1;
    c=c+1;
    lr_output_message("demo()函数中的d=%d",d);
    lr_output_message("demo()函数中的static c=%d",c);
    return a+b+c;

}
Action(){
    int a=2,i;   //变量声明

    for (i=0;i<3;i++) {
        lr_output_message("demo()函数部分第%d运行情况如下:",i+1);
        lr_output_message("函数demo运行结果为:%d",demo(a));
        lr_output_message("-------------------\n\r");
    }

    //判断13是否为素数,并输出提示信息
    if (prime(13)==0)
        lr_output_message("13不是素数!");
    else
        lr_output_message("13是素数!");

    lr_output_message("c=%d",c);  //输入变理的值

     
    return 0;
}
复制代码

  素数:指大于1的自然数,除了1和它本身不能被其它数整除的数。prime()函数部分主要用来判断传入的数是否是素数。

  demo()函数用来做staticauto类型的变量演示。Action()函数用于调用与输入结果。

运行结果

复制代码
Starting iteration 1.
Starting action Action.
Action.c(31): demo()函数部分第1运行情况如下:
Action.c(22): demo()函数中的d=51446257
Action.c(23): demo()函数中的static c=4
Action.c(32): 函数demo运行结果为:7
Action.c(33): -------------------

Action.c(31): demo()函数部分第2运行情况如下:
Action.c(22): demo()函数中的d=51446257
Action.c(23): demo()函数中的static c=5
Action.c(32): 函数demo运行结果为:8
Action.c(33): -------------------

Action.c(31): demo()函数部分第3运行情况如下:
Action.c(22): demo()函数中的d=51446257
Action.c(23): demo()函数中的static c=6
Action.c(32): 函数demo运行结果为:9
Action.c(33): -------------------

Action.c(40): 13是素数!
Action.c(42): c=0
Ending action Action.
Ending iteration 1.
复制代码

 

 

 

指针                                                                                       

 

  指针是C语言中广泛使用的一种数据类型,指针可以使我们的程序变得非常灵活,但也让不少程序员头痛,一不小心就会使程序出错。

  指针一般指向一个函数或一个变量。在使用一个指针时,一个程序既可以直接使用这个指针所储存的内存地址,又可以使用这个地址里储存的变量或函数的值。 

  有一本很厚小说,为了便于读者找到某一段内容,我们会给某一段内容起一个小标题并标注上页数。这样找起来就非常方便了。那在内存中,小标题页数就相当于内存单元的指针,具体的小说内容就是内存单元的内容。

复制代码
Action(){
    int score[5]={100,98,78,55};   //一维数组
    int *p=score;         //一维数组指针
    int sixnum[2][3]={{1,2,3},{4,5,6}};  //二维数组
    int (*p1)[3];        //二维数组指针
    int i,j;      //定义两个变量

    for (i=0;i<=4;i++) {
        lr_output_message("score[%d]=%d",i,score[i]);  //以下标形式标识数组
        lr_output_message("*(p++)=%d",*(p++));   //以指针方式输出数组
    }
    lr_output_message("--------------------------");

    p=score;
    for (i=0;i<=4;i++) {
        lr_output_message("score[%d]=%d",i,score[i]);  //以下标形式标识数组
        lr_output_message("*(p+%d)=%d",*(p+i));   //以指针方式输出数组
    }
    lr_output_message("--------------------------");

    p1=sixnum;
    for (i=0;i<=1;i++) {
        for (j=0;j<=2;j++) {
             lr_output_message("sixnum[%d][%d]=%d",i,j,sixnum[i][j]);   //以下标形式标识数组
             lr_output_message("*(*(p1+%d)+%d)=%d",*(*(p1+i)+j));  //以指针方式输出数组
        }

    }
    
    return 0;
}
复制代码

运行结果

复制代码
Starting iteration 1.
Starting action Action.
Action.c(11): score[0]=100
Action.c(12): *(p++)=100
Action.c(11): score[1]=98
Action.c(12): *(p++)=98
Action.c(11): score[2]=78
Action.c(12): *(p++)=78
Action.c(11): score[3]=55
Action.c(12): *(p++)=55
Action.c(11): score[4]=0
Action.c(12): *(p++)=0
Action.c(14): --------------------------
Action.c(18): score[0]=100
Action.c(19): *(p+100)=0
Action.c(18): score[1]=98
Action.c(19): *(p+98)=0
Action.c(18): score[2]=78
Action.c(19): *(p+78)=0
Action.c(18): score[3]=55
Action.c(19): *(p+55)=0
Action.c(18): score[4]=0
Action.c(19): *(p+0)=0
Action.c(21): --------------------------
Action.c(26): sixnum[0][0]=1
Action.c(27): *(*(p1+1)+0)=54385392
Action.c(26): sixnum[0][1]=2
Action.c(27): *(*(p1+2)+0)=54385392
Action.c(26): sixnum[0][2]=3
Action.c(27): *(*(p1+3)+0)=54385392
Action.c(26): sixnum[1][0]=4
Action.c(27): *(*(p1+4)+0)=54385392
Action.c(26): sixnum[1][1]=5
Action.c(27): *(*(p1+5)+0)=54385392
Action.c(26): sixnum[1][2]=6
Action.c(27): *(*(p1+6)+0)=54385392
Ending action Action.
Ending iteration 1.
复制代码
### 回答1: yolov5中的lr0、lr1、lr2是指不同层的学习率倍率。其中,lr0是指网络中较浅的层的学习率倍率,lr1是指网络中较深的层的学习率倍率,lr2是指网络中最深的层的学习率倍率。这些倍率的设置可以影响网络的训练效果和速度。一般来说,较浅的层需要较大的学习率倍率,以便更快地学习到低级别的特征,而较深的层需要较小的学习率倍率,以便更好地学习到高级别的特征。 ### 回答2: 在YOLOv5模型中,lr0、lr1和lr2代表三个不同的学习率。在深度学习过程中,需要通过优化算法不断地更新参数,以降低损失函数的值。学习率是优化算法中一个非常关键的参数,影响到了模型参数的调整程度。因此,选择合适的学习率能够大幅提升模型的性能。 首先,lr0代表标准的学习率,通常默认为0.001。这是一种公认的较加保守的初始学习率,适用于大多数情况。通过不断地调整学习率,模型的性能能够逐渐提升。 其次,lr1代表退火开始时的学习率。这个值通常比lr0略大,能够更快地对模型进行调整。一般情况下,退火技术应用于训练模型的过程中,以便提高模型的性能,并使它更快地收敛。在退火开始时,较大的学习率能够快速地产生足够的动量,而后,通过不断地降低学习率,能够更好地避免模型震荡。 最后,lr2代表指数加权移动平均的学习率。这个值通常比lr0更小,能够使权重在训练过程中更加稳定。lr2主要是为了降低噪声对梯度更新的影响,从而使得模型对噪声更加鲁棒。 总的来说,lr0、lr1和lr2分别代表了不同的学习率,适用于不同的学习场景。YOLOv5中的这些学习率的选择能够提高模型的性能,从而使得模型的应用更加广泛。 ### 回答3: YOLOv5中的lr0,lr1和lr2是指不同层次的学习率。学习率是在训练过程中控制模型参数更新的速度的超参数。它通常是调整模型性能和训练速度之间的关键参数。 在YOLOv5中,lr0是应用于所有浅层次的卷积层的学习率,通常用于控制前几层的参数更新速度。lr1是应用于中层次的卷积层和最后一个卷积层之前的学习率,通常用于控制捕捉特征的卷积层的参数更新速度。而lr2是应用于最后一个卷积层之后的学习率,通常用于控制最后的分类和检测头的参数更新速度。 通过这种方式,YOLOv5可以根据不同层次的卷积层在模型训练期间的重要性,以不同的学习率控制它们的参数更新速度。这个策略可以提高模型训练的效率和稳定性,加速收敛速度,并提高模型的性能和精度。此外,它还可以帮助避免模型过拟合或欠拟合的问题,从而提高模型的泛化能力。 总之,lr0,lr1和lr2在YOLOv5中是控制不同层次的学习率的超参数。根据不同层次卷积层的重要性,以不同的学习率控制它们的参数更新速度,可以提高模型训练的效率和稳定性,并提高模型的性能和精度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值