(1)max函数:
C = max(A):
如果A是一个向量,那么C便是这个向量元素中的最大值;
如果A是一个二维矩阵,那么C便是选出每一列中的最大值,返回一个1*n的矩阵,或者说是一个n维行向量。
如果A是多为数组,max(A) treats the values along the first non-singleton dimension as vectors, returning the maximum value of each vector.
C=max(max(A));
A是一个矩阵,返回值C就是这个矩阵的最大值。
规范写法:
- 例1: X=[2 8 4;7 3 9];
max(X,[],1) =
[7 8 9] (返回的是每一列的最大值,也就是一个行向量)
max(X,[],2) =
[8;9] (返回的是每一行的最大值,也就是一个列向量)
- 例2: X=[1 5;2 6]; Y=[3 4;3 4]; Z=max(X,Y)
Z = 3 5
3 6 (返回两个矩阵当中对应的最大值的矩阵,且两个矩阵X,Y是相同维度)
(2)find:找到非零元素的索引和值
语法:
1.
2.
3.
4.
5.
6.
7. len = length(find(X == k))
说明:
1.
找出矩阵X中的所有非零元素,并将这些元素的线性索引值(linear indices:按列)返回到向量ind中。
如果X是一个行向量,则ind是一个行向量;否则,ind是一个列向量。
如果X不含非零元素或是一个空矩阵,则ind是一个空矩阵。
2.
返回第一个非零元素k的索引值。
k必须是一个正数,但是它可以是任何数字数值类型。
4.
返回最后一个非零元素k的索引值。
5.
返回矩阵X中非零元素的行和列的索引值。
这个语法对于处理稀疏矩阵尤其有用。
如果X是一个N(N>2)维矩阵,col包括列的线性索引。
例如,一个5*7*3的矩阵X,有一个非零元素X(4,2,3),find函数将返回row=4和col=16。也就是说,(第1页有7列)+(第2页有7列)+(第3页有2列)=16。
6.
返回X中非零元素的一个列或行向量v,同时返回行和列的索引值。
如果X是一个逻辑表示,则v是一个逻辑矩阵。
输出向量v包含通过评估X表示得到的逻辑矩阵的非零元素。
例如,
A= magic(4)
A =
[r,c,v]= find(A>10);
r', c', v'
ans =
ans =
ans =
这里返回的向量v是一个逻辑矩阵,它包含N个非零元素,N=(A>10)
7. len = length(find(X == k));
是为了求得矩阵X中值为k的元素个数,等价于下面两种方法:
(1) len = length(X(X==k));
(2) B = X==k;
len=sum(sum(B));
例1
X = [1 0 4 -3 0 0 0 8 6];
indices = find(X) :返回X中非零元素的线性索引值。
indices =
例2
你可以用一个逻辑表达方式定义X。例如
ans =
例3
下面find指令
X = [3 2 0; -5 0 7; 0 0 1];
[r,c,v] = find(X)
返回X中非零元素行索引值的向量:
r =
X中非零元素列索引值的向量:
c =
包含X中非零元素的向量:
v =
例4
下列表示
[r,c,v] = find(X>2)
返回包含X中非零元素的行索引值的向量:
r =
包含X中非零元素的列索引值的向量:
c =
包含N=(X>2)非零元素的逻辑矩阵:
v =
记住,当你用find指令处理一个逻辑表达的时候,输出向量v不包含输入矩阵的非零元素的索引值。而是包含评估逻辑表达之后返回的非零值。
例5
在向量上的一些操作
x = [11
find(x)
ans =
find(x == 0)
ans =
find(0 < x & x < 10*pi)
ans =
例6
对于矩阵
M = magic(3)
M =
find(M > 3, 4) :返回前四个M>3的索引值
ans =
例7
如果X是一个全零向量,find(X)返回一个空矩阵。
例如indices = find([0;0;0])
indices =