pandas的map apply applymap的区别 https://blog.csdn.net/u010569893/article/details/103733319
pandas编程01 https://blog.csdn.net/u010569893/article/details/103717051
- value_counts()统计一个series中的值出现的次数
- 将np的多维数组平铺成一维:ravel()和flatten()
- 查看特征的基本统计信息describe():
- 字符串处理df.str
- dataFrame分组并统计分组后的结果groupby()
- 多条件筛选 &
- df排序sort_values()
- np数组拼接 —> np.concatenate()
- one-hot编码
- apply()
- 差分diff()操作来衍生序列型特征
- 初始化一个向量或者矩阵
pandas编程02 https://blog.csdn.net/u010569893/article/details/103688898
- 北京时间和世界时间早8个小时,如何转换呢?
- 如何判断字典中是否含有某个key
- 获取dataframe某个列的方法
pandas编程03 https://blog.csdn.net/u010569893/article/details/103683396
- np.nan_to_num(x)
- SparkSession.createDataFrame()
- loc和iloc的区别
- rename()
- apply()
pandas编程04 https://blog.csdn.net/u010569893/article/details/103672584
- pandas 的axis=1和0的区别
- astype()
- dataframe筛选样本或特定列
- 缺失值的处理
- 给dataframe添加列名和行序号
- 排序
pandas编程05 https://blog.csdn.net/u010569893/article/details/103672530
-
drop_duplicates 删除重复行
-
将DataFrame转化为字典dict
-
apply函数
-
groupby():根据某个字段进行分组
-
agg():对分组后的结果进行聚合运算
reset_index():对分组后的数据重新编排顺序
merge():将两个dataframe根据某个字段进行列融合
-
对Series进行去重unique()操作
-
concat()