Interesting Integers(CF---BAPC 14 + hnoj11589)扩展欧几里得

题意:类斐波那契;G[k]=G[k-1]+G[k-2];(k>2);使得初始值G[1]和G[2]尽量小(且G[1]<=G[2])

 

思路:G[3]=1*G[1]+1*G[2];

          G[4]=1*G[1]+2*G[2];

          G[5]=2*G[1]+3*G[2];

          G[6]=3*G[1]+5*G[2];

          ...............                  //系数满足fib函数1 1 2 3 5 8 13.......

          G[k]=fib[k-2]*G[1]+fib[k-1]*G[2];

 

.......so.由扩展欧几里得求同余方程 a=fib[k-2]、b=fib[k-1];    

                            ax+by=c            ( x=G[1],y=G[2],c=G[k])

 

然后注意优化下,求得的最小正整数x,使得y尽量小但是满足y>=x;

 

详见代码;

 

转载请注明出处:寻找&星空の孩子

题目链接:http://codeforces.com/gym/100526/attachments  或者  http://acm.hunnu.edu.cn/online/?action=problem&type=show&id=11589 

 

用__int64交,long long 会WA

 

#include<stdio.h>
#define ll __int64
#define INF 0x7FFFFFFF
ll fib[55],len;
//用__int64
void init()
{
    fib[0]=0;
    fib[1]=fib[2]=1;
    ll i;
    for(i=3;; i++)
    {
        fib[i]=fib[i-1]+fib[i-2];
        if(fib[i]>1000000000) break;
    }
    len=i;
    // for(i=1;i<len;i++)
    //printf("%lld  %lld\n",i,fib[i]);
}

void exgcd(ll a,ll b,ll &d,ll &x,ll &y)
{
    if(!b) d=a,x=1,y=0;
    else
    {
        exgcd(b,a%b,d,y,x);
        y-=x*(a/b);
    }
}

ll xx,yy;

int main()
{
    int T;
    scanf("%d",&T);
    init();
    // printf("len=%lld\n",len);
    while(T--)
    {
        ll c,a,b,x,y,d;
        xx=INF,yy=INF;
        scanf("%I64d",&c);

        for(ll i=2; i<len; i++)
        {
            a=fib[i-1];
            b=fib[i];
            exgcd(a,b,d,x,y);
            // printf("x=%lld,y=%lld\n",x,y);
            if(c%d) continue;
            else
            {
                x=x*(c/d);
                y=y*(c/d);
                ll ma=b/d;
                ll mb=a/d;

                x=(x%ma+ma)%ma;
                y=(c-x*a)/b;

                ll   k = (y-x-1) / (ma+mb);//优化
                x += ma*k, y -= mb*k;
                
                while (y >= x && y <= yy)
                {
                    if ((y < yy || (y == yy && x < xx))&&x>0) xx = x, yy = y;
                    x += ma, y -= mb;
                }
            }
        }
        printf("%I64d %I64d\n",xx,yy);
    }
    return 0;
}


 

 

 

 

 

 

 

 

 

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值