题目:
Given an index k, return the kth row of the Pascal's triangle.
For example, given k = 3,
Return [1,3,3,1]
.
Note:
Could you optimize your algorithm to use only O(k) extra space?
题目来源:https://oj.leetcode.com/problems/pascals-triangle-ii/
解题思路:可以利用上一题的杨辉三角,直接返回最后一行即可。如果空间复杂度为O(k),则可以考虑滚动数组的方式。
利用上一题:
#include<iostream>
#include<vector>
using namespace std;
vector<vector<int> > generate(int numRows)
{
vector<vector<int> >results;
if(numRows==0)
return results;
results.push_back(vector<int>(1,1));
for(int i=0;i<numRows-1;i++)
{
vector<int> result(1,1);
for(int j=0;j<results[i].size()-1;j++)
result.push_back(results[i][j]+results[i][j+1]);
result.push_back(1);
results.push_back(result);
}
return results;
}
vector<int> getRow(int rowIndex)
{
vector<vector<int> > result=generate(rowIndex+1);
return result[rowIndex];
}
int main()
{
vector<int> results=getRow(4);
system("pause");
return 0;
}
利用滚动数组:
#include<iostream>
#include<vector>
using namespace std;
vector<int> getRow(int rowIndex)
{
if(rowIndex<0)
return vector<int>();
if(rowIndex==0)
return vector<int>(1,1);
vector<vector<int> >result(2);
result[0].push_back(1);
result[0].push_back(1);
for(int i=2;i<=rowIndex;i++)
{
result[(i-1)&1].clear();
result[(i-1)&1].push_back(1);
for(int j=0;j<result[i&1].size()-1;j++)
result[(i-1)&1].push_back(result[i&1][j]+result[i&1][j+1]);
result[(i-1)&1].push_back(1);
}
return result[(rowIndex-1)&1];
}
int main()
{
vector<int> results=getRow(4);
system("pause");
return 0;
}
其实这里使用new出的数组比用vector更好,因为用vector会涉及动态开辟内存,而此题明显是需要固定大小的数组,再者如果用到vector的clear函数,下次还需要动态开辟内存,耗费时间长。或者在定义vector时,就声明其大小:
vector<vector<int> >result(2,vector<int>(rowIndex,0));这样就不需要再调用clear了,但是在增加元素时,就需要用下标访问,而不是用push_back了。