数据挖掘建模 原理推导篇
数据挖掘建模 原理推导篇
skyHdd
deep work,simple life
展开
-
sklearn 算法调参 决策树调参
scikit-learn决策树算法类库介绍scikit-learn决策树算法类库内部实现是使用了调优过的CART树算法,既可以做分类,又可以做回归。分类决策树的类对应的是DecisionTreeClassifier,而回归决策树的类对应的是DecisionTreeRegressor。两者的参数定义几乎完全相同,但是意义不全相同。下面就对DecisionTreeClassifier和DecisionTreeRegressor的重要参数做一个总结,重点比较两者参数使用的不同点和调参的注意点。Deci..原创 2020-07-05 16:26:17 · 978 阅读 · 0 评论 -
决策树scikit-learn重要参数详解
这里写目录标题决策树与SKlearn工具包参数汇总参数详解不纯度计算方法参数:criterion**sklearn提供了两种选择:**基尼系数与信息熵比较重要参数: random_state & splitterrandom_statesplitter剪枝参数:1、max_depth2、min_samples_leaf3、min_samples_split4、max_features5、m...原创 2020-04-28 22:26:11 · 4363 阅读 · 0 评论 -
【数据挖掘算法原理】 决策树模型原理
树模型决策树:从根节点开始一步步走到叶子节点(决策)所有的数据最终都会落到叶子节点,既可以做分类也可以做回归树的组成 根节点:第一个选择点 非叶子节点与分支:中间过程 叶子节点:最终的决策结果如何切分特征(选择节点) 问题:根节点的选择该用哪个特征呢?接下来呢?如何切分呢? 目标:通过一种衡量标准,来计算通过不同特征进行分支选择后的分类 情况,找出来最好的那个当成根...原创 2018-09-02 15:59:44 · 1075 阅读 · 0 评论