决策树scikit-learn重要参数详解

决策树与SKlearn工具包

Sklearn库中的分类决策树的函数以及所包含的参数,目前只能进行预剪枝,不能进行后剪枝。

参数汇总

classsklearn.tree.DecisionTreeClassifier(criterion=’gini’, splitter=’best’, max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, class_weight=None, presort=False)

  • 七个参数:
    Criterion,
    两个随机性相关的参数(random_state,splitter),
    四个剪枝参数(max_depth, min_sample_leaf,max_feature,min_impurity_decrease)
  • 一个属性:feature_importances_
  • 四个接口:fit,score,apply,predict

参数详解

不纯度计算方法参数:criterion

为了要将数据转化为一棵树,决策树需要找出最佳节点和最佳的分枝方法,对分类树来说,衡量这个“最佳”的指标叫做“不纯度”。通常来说,不纯度越低,决策树对训练集的拟合越好。现在使用的决策树算法在分枝方法上的核心大多是围绕在对某个不纯度相关指标的最优化上。
不纯度基于节点来计算,树中的每个节点都会有一个不纯度,并且子节点的不纯度一定是低于父节点的,也就是说,在同一棵决策树上,叶子节点的不纯度一定是最低的。

Criterion这个参数正是用来决定不纯度的计算方法的。

sklearn提供了两种选择:
  1. 输入’entropy’,使用信息熵(Entropy)
  2. 输入’gini’,使用基尼系数(Gini Impurity)

计算公式如下:
在这里插入图片描述

其中t代表给定的节点,i代表标签的任意分类,p(i|t)代表标签分类i在节点t上所占的比例。注意,当使用信息熵时,sklearn实际计算的是基于信息熵的信息增益(Information Gain),即父节点的信息熵和子节点的信息熵之差。
具体含义参见:决策树模型原理

基尼系数与信息熵比较

比起基尼系数,信息熵对不纯度更加敏感,对不纯度的惩罚最强。但是在实际使用中,信息熵和基尼系数的效果基本相同。信息熵的计算比基尼系数缓慢一些,因为基尼系数的计算不涉及对数。另外,因为信息熵对不纯度更加敏感,所以信息熵作为指标时,决策树的生长会更加“精细”,因此对于高维数据或者噪音很多的数据,信息熵很容易过拟合,基尼系数在这种情况下效果往往比较好。当然,这不是绝对的。

criterion对决策树模型的影响:
确定不纯度的计算方法,帮忙找出最佳节点和最佳分枝,不纯度越低,决策树对训练集的拟合越好
参数说明: 不填默认gini,填写gini使用基尼系数,填写entropy使用信息增益
参数选择(gini or entropy)
通常就使用基尼系数;
数据维度很大,噪音很大时使用基尼系数;
维度低,数据比较清晰的时候,信息熵和基尼系数没区别;
当决策树的拟合程度不够的时候,使用信息熵 两个都试试,不好就换另外一个;

决策树的基本流程简单概括如下:
1、计算全部特征的不纯度指标
2、选取不纯度指标最优特征来分枝
3、在第一个特征的分枝下,计算全部特征的不纯度指标
4、选取不纯度指标最优的特征继续分枝
……
直到没有更多的特征可用,或整体的不纯度指标已经最优,决策树就会停止生长。

但是如果仅仅根据这些就生成树的话,那每个人画出来的每一棵树可能都不一样。它为什么会不稳定呢?如果使用其他数据集,它还会不稳定吗?

其实,无论决策树模型如何进化,在分枝上的本质都还是追求某个不纯度相关的指标的优化,不纯度是基于节点来计算的,决策树在建树时,是靠优化节点来追求一棵优化的树,但最优的节点能够保证最优的树吗?集成算法被用来解决这个问题,既然一棵树不能保证最优,那就建更多的不同的树,然后从中取最好的。怎样从一组数据集中建不同的树?在每次分枝时,不从使用全部特征,而是随机选取一部分特征,从中选取不纯度相关指标最优的作为分枝用的节点。这样,每次生成的树也就不同了。

重要参数: random_state & splitter

random_state

random_state用来设置分枝中的随机模式的参数。
参数设置:默认None,在高维度时随机性会表现更明显,低维度的数据(比如鸢尾花数据集),随机性几乎不会显现。输入任意整数,会一直长出同一棵树,让模型稳定下来。

splitter

splitter也是用来控制决策树中的随机选项的。
参数设置:
有两种输入值,输入’best’,决策树在分枝时虽然随机,但是还是会优先选择更重要的特征进行分枝(重要性可以通过属性feature_importances_查看);
输入’random’,决策树在分枝时会更加随机,树会因为含有更多的不必要信息而更深更大,并因这些不必要信息而降低对训练集的拟合。这也是防止过拟合的一种方式。
当你预测到你的模型会过拟合,用这两个参数来帮助你降低树建成之后过拟合的可能性。当然,树一旦建成,我们依然是使用剪枝参数来防止过拟合。

剪枝参数:

在不加限制的情况下,一棵决策树会生长到衡量不纯度的指标最优,或者没有更多的特征可用为止。这样的决策树往往会过拟合,该决策树模型会在训练集上表现很好,在测试集上却表现糟糕。我们收集的样本数据不可能和整体的状况完全一致,因此当一棵决策树对训练数据有了过于优秀的解释性,它找出的规则必然包含了训练样本中的噪声,并使它对未知数据的拟合程度不足。
为了让决策树有更好的泛化性,我们要对决策树进行剪枝。剪枝策略对决策树的影响巨大,正确的剪枝策略是优化决策树算法的核心。

sklearn为我们提供了不同的剪枝策略:

1、max_depth

限制树的最大深度,超过设定深度的树枝全部剪掉

这是用得最广泛的剪枝参数,在高维度低样本量时非常有效。决策树多生长一层,对样本量的需求会增加一倍,所以限制树深度能够有效地限制过拟合。在集成算法中也非常实用。

  • 参数调试:实际使用时,建议从=3开始尝试,看看拟合的效果再决定是否增加设定深度。
2、min_samples_leaf

min_samples_leaf 限定,一个节点在分枝后的每个子节点都必须包含至少min_samples_leaf个训练样本,否则分枝就不会发生,或者,分枝会朝着满足每个子节点都包含min_samples_leaf个样本的方向去发生。

一般搭配max_depth使用,在回归树中有神奇的效果,可以让模型变得更加平滑。这个参数的数量设置得太小会引起过拟合,设置得太大就会阻止模型学习数据。

  • 参数调试:
    一般来说,建议从=5开始使用。
    如果叶节点中含有的样本量变化很大,建议输入浮点数作为样本量的百分比来使用。
    同时,这个参数可以保证每个叶子的最小尺寸,可以在回归问题中避免低方差,过拟合的叶子节点出现。
    对于类别不多的分类问题,=1通常就是最佳选择。
3、min_samples_split

min_samples_split限定,一个节点必须要包含至少min_samples_split个训练样本,这个节点才允许被分枝,否则分枝就不会发生。

4、max_features

一般max_depth使用,用作树的’精修’

max_features限制分枝时考虑的特征个数,超过限制个数的特征都会被舍弃。和max_depth异曲同工,max_features是用来限制高维度数据的过拟合的剪枝参数,
缺点:但其方法比较暴力,是直接限制可以使用的特征数量而强行使决策树停下的参数,在不知道决策树中的各个特征的重要性的情况下,强行设定这个参数可能会导致模型学习不足。
如果希望通过降维的方式防止过拟合,建议使用PCA,ICA或者特征选择模块中的降维算法。

5、min_impurity_decrease

min_impurity_decrease限制信息增益的大小,信息增益小于设定数值的分枝不会发生。这是在0.19版本种更新的功能,在0.19版本之前时使用min_impurity_split。

重要属性和接口

  • 属性是在模型训练之后,能够调用查看的模型的各种性质。对决策树来说,最重要的是feature_importances_,能够查看各个特征对模型的重要性。
  • sklearn中许多算法的接口都是相似的,之前已经用到的fit和score,几乎对每个算法都可以使用。除了这两个接口之外,决策树最常用的接口还有apply和predict。
  • apply中输入测试集返回每个测试样本所在的叶子节点的索引;
  • predict输入测试集返回每个测试样本的标签。

决策树结合 scikit-learn工具包进行调参
http://www.scikitlearn.com.cn/0.21.3/11/
https://www.cnblogs.com/juanjiang/p/11003369.html
https://blog.csdn.net/yoggieCDA/article/details/88353133

  • 4
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值