bzoj4330

2 篇文章 0 订阅

不会polya。。用的是burnside引理。
假设有n种置换法,本质不同方案就等于在每一种置换下不变的情况数之和除n
即: 1nni=1pipi
题意:
n个戒指串成一个项链,每个项链都是一个有m个宝石的环,宝石共有r种颜色,问有多少种不同方案。要求项链上相邻戒指不同。戒指在旋转下相同视为相同,项链不用考虑旋转(即长得不一样就算两种方案)。N<=10^15,M<=10^9,R<=10^6。

#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<iostream>
#define mmod 3214567
#define N 1100000
#define LL long long
using namespace std;
struct mat{
    LL a[2][2];
    mat(){memset(a,0,sizeof(a));}
    friend mat operator *(mat a,mat b)
    {
        mat c;
        for(LL i=0;i<2;i++)
            for(LL j=0;j<2;j++)
                for(LL k=0;k<2;k++)
                    c.a[i][j]=(c.a[i][j]+a.a[i][k]*b.a[k][j])%mmod;
        return c;
    }
}a,g;
LL n,m,c[N],ans;
LL gcd(LL a,LL b)
{
    if(b==0) return a;
    return gcd(b,a%b);
}
LL qmod(LL a,LL b)
{
    LL t=1;
    while(b)
    {
        if(b%2) t=t*a%mmod;
        b/=2;
        a=a*a%mmod;
    }
    return t;
}
LL phi(LL x)
{
    int q=sqrt(x),res=x;
    for(int i=2;i<=q;i++)
    {
        if(x%i) continue;
        res=res/i*(i-1);
        while(x%i==0) x/=i;
        if(i*i>x) break;
    }
    if(x>1) res=res/x*(x-1);
    return res;
}
void init()
{
    LL r,t=0;
    scanf("%lld%lld%lld",&n,&m,&r);
    int q=sqrt(m);
    for(LL i=1;i<=q;i++)
    {
        if(m%i) continue;
        LL g=i;
        t=(t+qmod(r,g)*phi(m/g))%mmod;
        if(i*i==m) break;
        g=m/i;
        t=(t+qmod(r,g)*phi(m/g))%mmod;
    }
    LL ny=qmod(m,mmod-2);
    t=t*ny%mmod;
    m=t;
}
void solve()
{
    a.a[0][0]=m-2;a.a[0][1]=1;
    a.a[1][0]=m-1;a.a[1][1]=0;
    for(LL i=0;i<=1;i++) g.a[i][i]=1;
    n--;
    while(n)
    {
        if(n%2) g=g*a;
        n/=2;
        a=a*a;
    }
    ans=m*g.a[1][0]%mmod;
    ans=(ans+mmod)%mmod;
    printf("%lld\n",ans);
}
int main()
{
    init();
    solve();
    return 0;
}

题解:
先求出有多少种不同的戒指。因为戒指可以旋转,所以要用polya去重。在这里置换就是顺时针转1到m个单位。当我们转k个单位的时候,相当于i向(i+k)%n连边。这样每个点都是一入度一出度,形成了若干个环。要使旋转前后一样,显然同一个环要染同种颜色。若有g个环,那方案数就是 rg 。g=gcd(m,k)。证明就是我们想象一个点x,如果x要从环上绕回x,那走的步数为n的倍数,每次加k,第一次碰到m的倍数就是lcm(m,k),步数即为 lcm(m,k)k 。也就是说有 mlcm(m,k)k=g 个环。显然枚举k会超时,但注意我们关注的只是环的数量,那么就枚举gcd(k,m)=g,能和m取到gcd为g的k显然有 ϕ(mg) 个。
然后设f[i][0,1]表示放了前i个戒指,第i个戒指和第一个是否相同方案数,矩乘即可。

这题m可能为模数倍数(虽然数据没有),处理方法见bzoj3202

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值