DAG上的动态规划

1、嵌套矩形

有向无环图(DAG,Directed Acyclic Graph)上的动态规划是学习动态规划的基础。很多问题都可以转化为DAG上的最长路、最短路或路径计数问题。


题目描述:

      有n个矩形,每个矩形可以用两个整数a,b描述,表示它的长和宽。矩形X(a,b)可以嵌套在矩形Y(c,d)中当且仅当a<c,b<d,或者b<c,a<d(相当于把矩形X旋转90°)。例如(1,5)可以嵌套在(6,2)内,但不能嵌套在(3,4)内。你的任务是选出尽可能多的矩形排成一行。使得除了最后一个之外,每个矩形都可以嵌套在下一个矩形内。


分析:

       矩形之间的"可嵌套"关系是一个典型的二元关系,二元关系可以用图来建模。如果矩形X可以嵌套在矩形Y里,我们就从X到Y连一条有向边。这个有向图是无环的,因为一个矩形无法直接或间接地嵌套在自己的内部。换句话说,它是一个DAG。这样,我们的任务便是求DAG上的最长路径。


#include<iostream>
using namespace std;
#define maxn 1000+10 

typedef struct {		//矩形的数据结构,长、宽 
	int length;	
	int width;
}rectangle;

int G[maxn][maxn]; 		//DAG图的矩阵表示 
int d[maxn],n;			//d[i]顶点i的最长路径 
rectangle rec[maxn];

//打印出图的邻接矩阵,目的是确保建图正确无误 
void print_Graph()
{
	cout<<"|矩 形|";
	for(int i=1;i<=n;i++) 
		cout<<rec[i].length<<rec[i].width ;
	cout<<endl;;
	
	for(int i=1;i<=n;i++)
	{
		for(int k=0;k<=n;k++)
			cout<<"------";
		cout<<endl;
		
		cout<<rec[i].length<<rec[i].width ;
		for(int j=1;j<=n;j++)
			cout<<G[i][j];
		cout<<endl;
	}	
}
//构造图 
void createGraph()
{
	memset(G,0,sizeof(G));
	for(int i=1;i<=n;i++)
		for(int j=1;j<=n;j++)
		if(rec[i].length>rec[j].length && rec[i].width>rec[j].width)				
				G[i][j]=1; 	//rec[i] 包含 rec[j]
//	print_Graph();
}

//记忆化搜索程序 
int dp(int i)
{
	int& ans=d[i];	//为该表项声明一个引用,简化对它的读写操作。 
	if(ans>0) return ans;
	ans=1;
	for(int j=1;j<=n;j++)
		if(G[i][j])
			ans=ans>dp(j)+1?ans:dp(j)+1;
	return ans;
}

int main()
{
	int i, tmp1, tmp2, ans=0;
	cin>>n; 
	for(i=1;i<=n;i++)
	{
		cin>>tmp1>>tmp2;
		rec[i].length=tmp1>tmp2?tmp1:tmp2;//初始化矩形,长>宽
		rec[i].width=tmp1<tmp2?tmp1:tmp2; 
	}
	createGraph();
	//print_Graph();
	memset(d,0,sizeof(d)); //初始化记忆数组 
	for(i=1; i<=n; i++)
		ans=ans>dp(i)?ans:dp(i);	
	cout<<ans<<endl;
	return 0;
} 


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值