1、嵌套矩形
有向无环图(DAG,Directed Acyclic Graph)上的动态规划是学习动态规划的基础。很多问题都可以转化为DAG上的最长路、最短路或路径计数问题。
有n个矩形,每个矩形可以用两个整数a,b描述,表示它的长和宽。矩形X(a,b)可以嵌套在矩形Y(c,d)中当且仅当a<c,b<d,或者b<c,a<d(相当于把矩形X旋转90°)。例如(1,5)可以嵌套在(6,2)内,但不能嵌套在(3,4)内。你的任务是选出尽可能多的矩形排成一行。使得除了最后一个之外,每个矩形都可以嵌套在下一个矩形内。
分析:
矩形之间的"可嵌套"关系是一个典型的二元关系,二元关系可以用图来建模。如果矩形X可以嵌套在矩形Y里,我们就从X到Y连一条有向边。这个有向图是无环的,因为一个矩形无法直接或间接地嵌套在自己的内部。换句话说,它是一个DAG。这样,我们的任务便是求DAG上的最长路径。
#include<iostream>
using namespace std;
#define maxn 1000+10
typedef struct { //矩形的数据结构,长、宽
int length;
int width;
}rectangle;
int G[maxn][maxn]; //DAG图的矩阵表示
int d[maxn],n; //d[i]顶点i的最长路径
rectangle rec[maxn];
//打印出图的邻接矩阵,目的是确保建图正确无误
void print_Graph()
{
cout<<"|矩 形|";
for(int i=1;i<=n;i++)
cout<<rec[i].length<<rec[i].width ;
cout<<endl;;
for(int i=1;i<=n;i++)
{
for(int k=0;k<=n;k++)
cout<<"------";
cout<<endl;
cout<<rec[i].length<<rec[i].width ;
for(int j=1;j<=n;j++)
cout<<G[i][j];
cout<<endl;
}
}
//构造图
void createGraph()
{
memset(G,0,sizeof(G));
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
if(rec[i].length>rec[j].length && rec[i].width>rec[j].width)
G[i][j]=1; //rec[i] 包含 rec[j]
// print_Graph();
}
//记忆化搜索程序
int dp(int i)
{
int& ans=d[i]; //为该表项声明一个引用,简化对它的读写操作。
if(ans>0) return ans;
ans=1;
for(int j=1;j<=n;j++)
if(G[i][j])
ans=ans>dp(j)+1?ans:dp(j)+1;
return ans;
}
int main()
{
int i, tmp1, tmp2, ans=0;
cin>>n;
for(i=1;i<=n;i++)
{
cin>>tmp1>>tmp2;
rec[i].length=tmp1>tmp2?tmp1:tmp2;//初始化矩形,长>宽
rec[i].width=tmp1<tmp2?tmp1:tmp2;
}
createGraph();
//print_Graph();
memset(d,0,sizeof(d)); //初始化记忆数组
for(i=1; i<=n; i++)
ans=ans>dp(i)?ans:dp(i);
cout<<ans<<endl;
return 0;
}