ComfyUI使用总结

前言

目前github上star最多的文生图、图生图框架是stable-diffusion-webui,今天要介绍的是另一款很受欢迎的文生图、图生图框架ComfyUI,它的主要特点是以工作流的形式来进行和展现基于stable diffusion模型的文生图和图生图的过程,拖拽式操作来链接各个节点,比如base model、vae、controlnet、lora、hypernet等。让整个生成过程更加清晰,易于理解。在介绍ComfyUI的安装、配置、使用之前,先看一张ComfyUI的操作界面
图1
github地址:https://github.com/comfyanonymous/ComfyUI
有趣的使用教程:https://comfyanonymous.github.io/ComfyUI_tutorial_vn/
节点说明文档:https://blenderneko.github.io/ComfyUI-docs/

1.安装

安装过程如下:

# 创建虚拟环境
conda create -n sd python=3.10
conda activate sd

# 克隆ComfyUI仓库,安装依赖
git clone https://github.com/comfyanonymous/ComfyUI
cd ComfyUI
pip install -r requirements.txt

# 启动ComfyUI
python main.py

将stable diffusion底模(如:stable-diffusion-xl-base-1.0stable-diffusion-xl-refiner-1.0)放在models/checkpoints目录下;将vae、lora、controlnet等模型和插件放在ComfyUI/models/下的对应目录里。可以从Civitai或者LiblibAI下载各种sd的底模和插件
在这里插入图片描述

2.使用

ComfyUI启动后,默认的端口号是8188,在浏览器中输入http://127.0.0.1:8188/即可打开操作页面

1.常用节点和功能介绍

Load Checkpoint节点:选择stable diffusion底模,输出model、clip、vae
CLIP Text Encode(Prompt)节点:输入正向提示和负向提示,输入的文本将被clip模型进行编码
Empty Latent Image节点:生成空的隐空间图片,可以配置图片的长、宽、数量
KSampler节点:采样器,输入model、编码后的正向提示、编码后的负向提示、隐空间图片,配置随机种子、扩散步数、降噪强度等参数
VAE Decode节点:用于将隐空间中的图片解码成像素空间的图片

2.图片放大

ComfyUI中的图片放大方法主要有两种,第一种是在采样器输出的隐空间中放大,然后再进行一轮采样,最后解码成像素空间;第二种是在vae解码后的像素空间上进行放大,将放大后的图片再经过vea编码成隐空间,然后再进行一轮采样,最后解码成像素空间
在这里插入图片描述
在像素空间放大时使用了upscale model,这里介绍一个upscale model的网站:https://openmodeldb.info/

3.图生图

从工作流的节点可以看出,文生图的过程也是一种图生图,只是文生图过程中传入的是一个空的隐空间图像。在图生图过程中,vae模型会先将给定的图片编码成隐空间特征,用隐空间特征替代文生图中的空隐空间图像,后面的过程就和文生图一样了
在这里插入图片描述

4.图片修复

加载一张需要修补的图片,mask是需要修补的图像特征,vae在会同时编码image和mask图像来得到隐空间特征。下面的例子是在需修补的mask区域填充一只猫
在这里插入图片描述

5.lora

lora模型会同时作用于model和clip,lora模型可以通过串联同时使用多个
在这里插入图片描述

6.hypernetworks

超网络只作用于model
在这里插入图片描述

7.Embeddings/Textual Inversion

文本嵌入通常在prompt中使用,目的是将prompt中的指定词汇用自定义的embedding模型进行编码,例如下面的图片是使用了embedding_MarblingTIXL模型对prompt进行编码
在这里插入图片描述

8.区域组合

区域拼接通过不同的prompt作用不同的区域,再将各个区域联结起来,一起用采样器去噪,最后得到一张保护不同风格景色的图。区域组合实际上是将clip编码后的文本特征组合在一起
在这里插入图片描述

9.噪声隐空间组合

和区域组合不同的是,噪声隐空间组合是将采样后的隐空间图片特征组合在一起
在这里插入图片描述

10.controlnets和t2i-adapters

controlnets和t2i-adapters可以在图像生成过程中通过示例图像控制生成对象的位置、姿态和形状等。controlnets既可以单独加载,也可以链接base model,通常作用与编码后的正向提示词和示例图片,将controlnets得到的结果再作为正向提示传入采样器中
在这里插入图片描述
在这里插入图片描述

11.gligen

文本框gligen模型可以通过prompt控制对象的位置,gligen和clip一起对控制文本进行编码,然后和编码后的正向提示融合,得到新的文本编码特征当作正向提示传入到采样器中
在这里插入图片描述

12.unclip

unclip模型是经过特别调整的SD模型的版本,除了文本提示符之外,还可以接收图像作为输入。使用这些模型自带的CLIPVision对图像进行编码,然后在采样时将其提取的概念传递给主模型。CLIPVision对像素空间的图片进行编码,然后和编码后的正向提示融合作为新的正向提示传入采样器
在这里插入图片描述

13.模型合并

模型合并的思想是将多个checkpoint中的model融合后再作用于采样器
在这里插入图片描述

总结

文生图和图生图的过程包含了多个步骤,主要步骤有1)初始化隐空间图片特征,或者通过vae model对像素空间图片编码得到隐空间图片特征,2)clip model对正向和负向提示编码,得到文本特征,3)将隐空间图片特征和文本特征一起通过unet model降噪得到新的隐空间图片特征,4)利用vae model对隐空间图片特征解码得到像素空间图片
整个生成图片的过程十分灵活,我们可以在各个步骤上添加一些插件或者模型,来影响生成结果,ComfyUI就可以方便灵活的实现这些功能

参考链接:https://comfyanonymous.github.io/ComfyUI_examples/

<think>好的,我现在需要回答用户关于如何使用Java与ComfyUI进行集成或交互的问题。首先,我需要了解ComfyUI是什么。根据用户提供的引用[3],ComfyUI是一个支持LLM(大型语言模型)集成的插件工具,允许用户通过集成如OpenAI的GPT、Groq托管的开源模型以及Ollama本地部署的LLM等来进行创意创作。用户希望知道如何用Java与之交互。 首先,我需要确认ComfyUI是否有官方的Java SDK或者API支持。通常这类工具可能主要提供Python的支持,尤其是AI相关的项目。但用户需要用Java,所以可能需要寻找替代方法,比如通过REST API或者使用Java调用Python脚本。 根据引用[3],ComfyUI插件已经集成了多个LLM模型,可能这些模型通过API提供服务。如果ComfyUI本身提供HTTP接口,那么Java可以通过发送HTTP请求来与之交互。例如,使用Java的HttpClient发送POST请求到ComfyUI的API端点,传递必要的参数,如模型类型、输入文本等,然后处理返回的JSON数据。 另外,可能需要查看ComfyUI的文档,确认其是否有开放的API接口。如果官方文档中没有提到Java的支持,可能需要通过间接的方式,比如使用命令行调用Python脚本,然后Java通过Runtime或ProcessBuilder来执行这些脚本,并获取输出结果。不过这种方法可能效率较低,且维护复杂。 还有一种可能性是使用Jython或者GraalVM这样的工具,允许Java和Python代码互操作,但这样的配置可能比较复杂,尤其是涉及到依赖管理时。用户可能需要先确保ComfyUI的Python环境正确安装,并配置好相关依赖,然后在Java中调用这些Python模块。 另外,用户提到的引用[4]是关于TPM2工具的使用,虽然可能与当前问题无关,但需要确保在集成过程中,如果有安全相关的需求,可能需要考虑类似的安全措施,比如使用HTTPS协议保护API通信,或者在本地部署时确保环境安全。 总结可能的步骤: 1. 检查ComfyUI是否提供REST API或WebSocket接口。 2. 如果存在API,使用Java的HTTP客户端库(如OkHttp或Apache HttpClient)进行调用。 3. 如果不存在直接API,可能需要通过Java执行Python脚本,与ComfyUI交互。 4. 处理认证和安全性,如API密钥、HTTPS等。 5. 解析返回的数据(如JSON),并在Java应用中使用。 此外,用户提供的引用[3]提到插件集成了多个LLM模型,可能需要针对具体模型查看其API文档,例如OpenAI的GPT需要API密钥,Groq或Ollama的部署方式可能不同,需要分别处理。例如,Ollama本地部署可能需要发送请求到本地端口,而Groq托管的模型则需要访问外部URL。 最后,可能需要编写示例代码,展示如何发送请求和处理响应,确保用户能够理解具体实现步骤。同时提醒用户注意依赖版本和错误处理,比如网络超时、认证失败等情况。</think>要使用Java与ComfyUI进行集成或交互,可以遵循以下步骤: --- ### 1. **确认ComfyUI的接口类型** - ComfyUI本身是一个基于Python的图形化界面工具,但通过其插件[ComfyUI-Tara-LLM-Integration][^3],可能提供以下接口: - **REST API**:若插件开放HTTP接口,可通过Java发送HTTP请求调用LLM模型。 - **WebSocket**:实时交互场景下可能支持。 - **本地脚本调用**:若仅支持Python脚本,需通过Java间接调用。 --- ### 2. **通过HTTP API集成(推荐)** **假设ComfyUI插件提供REST API**(需查阅插件文档确认): ```java import java.net.URI; import java.net.http.HttpClient; import java.net.http.HttpRequest; import java.net.http.HttpResponse; public class ComfyUIClient { public static void main(String[] args) throws Exception { String apiUrl = "http://localhost:8188/prompt"; // 示例端点 String requestBody = """ { "model": "gpt-4", "prompt": "生成一段创意文本", "max_tokens": 100 } """; HttpClient client = HttpClient.newHttpClient(); HttpRequest request = HttpRequest.newBuilder() .uri(URI.create(apiUrl)) .header("Content-Type", "application/json") .POST(HttpRequest.BodyPublishers.ofString(requestBody)) .build(); HttpResponse<String> response = client.send(request, HttpResponse.BodyHandlers.ofString()); System.out.println("响应结果:" + response.body()); } } ``` **关键点**: - 替换`apiUrl`为实际接口地址。 - 根据模型要求调整请求参数(如`model`、`prompt`)。 - 处理认证(如API密钥通过`header`传递)。 --- ### 3. **通过Java调用Python脚本** **若ComfyUI仅支持Python交互**: ```java import java.io.BufferedReader; import java.io.InputStreamReader; public class PythonExecutor { public static void main(String[] args) { try { ProcessBuilder processBuilder = new ProcessBuilder("python3", "comfyui_script.py", "输入参数"); Process process = processBuilder.start(); BufferedReader reader = new BufferedReader(new InputStreamReader(process.getInputStream())); String line; while ((line = reader.readLine()) != null) { System.out.println("输出:" + line); } int exitCode = process.waitFor(); System.out.println("退出码:" + exitCode); } catch (Exception e) { e.printStackTrace(); } } } ``` **Python脚本示例(`comfyui_script.py`)**: ```python from comfyui_tara_llm import generate_text # 假设插件提供该函数 def main(): response = generate_text(model="gpt-4", prompt="生成创意文本") print(response) if __name__ == "__main__": main() ``` --- ### 4. **安全与依赖管理** - **认证**:若调用远程API,使用HTTPS并在Header中添加`Authorization: Bearer <API_KEY>`[^3]。 - **依赖冲突**:确保Python环境已安装ComfyUI插件依赖(如`pip install comfyui-tara-llm`)。 - **错误处理**:在Java中捕获`IOException`,并处理HTTP状态码(如401、500)。 --- ###
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值