StableSwarmUI使用总结

前言

StableSwarmUI是Stability AI官方的stable diffusion WebUI,前端网页采用HTML/JS开发,后端服务使用C#开发,可以提供响应迅速的和支持多线程的后端服务
github仓库:https://github.com/Stability-AI/StableSwarmUI

1.安装

StableSwarmUI只是stable diffusion的web框架,真正运行文生图和图生图等推理任务,还需要安装推理后端,官方推荐ComfyUI做为推理后端。可以选择提前安装或者是在StableSwarmUI安装的过程中安装ComfyUI。我推荐先安装好ComfyUI,运行成功后再安装StableSwarmUI,这样的安装过程可以更流畅一些
ComfyUI的安装请参考我的另一篇文章:https://blog.csdn.net/u010618499/article/details/134010897

1.安装.Net

StableSwarmUI的运行需要安装.NET,我用的是debian11操作系统,x86_64芯片架构,安装的是.NET 7.0版本,其他操作系统可以参考下面的链接:
.NET在各个操作系统上的安装方法:https://learn.microsoft.com/zh-cn/dotnet/core/install/

# 安装 .NET 之前,先将 Microsoft 包签名密钥添加到受信任密钥列表,并添加包存储库。
wget https://packages.microsoft.com/config/debian/11/packages-microsoft-prod.deb -O packages-microsoft-prod.deb
sudo dpkg -i packages-microsoft-prod.deb
rm packages-microsoft-prod.deb

# 安装.NET sdk
sudo apt-get update
sudo apt-get install -y dotnet-sdk-7.0

# StableSwarmUI在有些linux系统上需要单独安装runtime才能运行,如有需要,用下面的命令行安装
sudo apt-get install -y aspnetcore-runtime-7.0

安装完成后,在终端输入dotnet --version,如果有版本信息,就说明.NET安装成功了

2.安装StableSwarmUI

克隆StableSwarmUI仓库,运行launch-linux.sh脚本,StableSwarmUI服务的默认端口是7801,在浏览器上打开http://localhost:7801/Install进入安装页面,跟随页面提示进行安装即可。
主要步骤包含:

  1. 同意SD许可
  2. 选择一个主题颜色
  3. 选择使用对象,通常选择只是自己使用
  4. 选择要安装的推理后端,如果已经有 ComfyUI 或其他推理后端,可以跳过此步骤;如果没有,推荐 ComfyUI
  5. 选择要下载的模型,如果已经有了,可以跳过此步骤;如果没有,推荐SDXL1.0版本
  6. 确认所选的设置,然后安装,完成此操作后,它应该会自动重定向到主界面
git clone https://github.com/Stability-AI/StableSwarmUI
cd StableSwarmUI
bash launch-linux.sh

提示:如果服务启动过程中报Failed to launch mode 'webinstall' (If this is a headless/server install, change 'LaunchMode' to 'none' in settings)这样的错误,可以将StableSwarmUI/Data/Settings.fds文件里的LaunchMode改为none,如:LaunchMode: none

3.配置ComfyUI推理后端

安装好StableSwarmUI后,还需要配置推理后端,如下图所示,点击Server下的Backends选项卡,选择ComfyUI Self-Starting,在StartScript里输入ComfyUI中的main.py的绝对路径,再点save保存配置,这时StableSwarmUI会使用ComfyUI做为推理后端
在这里插入图片描述
配置好ComfyUI推理后端后,还需要告诉服务哪里能加载模型,点击Server下的Server Configuration选项卡,ModelRoot中填入ComfyUI/models目录的绝对路径,其他文本框里可以按下图填写,配置base model,lora,vae,controlnet,clip_vision等模型的目录
在这里插入图片描述
全部配置好之后,可能需重启StableSwarmUI服务,才能全部生效

2.使用

1.生成你的第一张图片

  1. 点击界面上方的Generate选项卡
  2. 在页面的下放选择base model和插件
  3. 这时Model文本框里会显示已选择的模型
  4. 然后输入正向和负向prompt
  5. 点击屏幕中的Generate按钮
  6. 稍等片刻,屏幕中央就会出现生成的图片
    在这里插入图片描述

2.使用refiner模型

官方发布的SDXL包含base和refiner两个版本的模型,两个模型可以配合使用,生成更加有细节的图片,如下图所示,选择base做为底模生成草图,然后选择refiner精修图片,得到的图片质感更佳
在这里插入图片描述

3.使用ComfyUI自定义工作流

点击界面上方的Comfy Workflow Editor选项卡,在页面中配置好节点,选择模型和插件,输入正向和负向prompt,然后点击Use This Workflow in Generate Tab按钮,这时会自动跳转到Generate选项卡页面,并且所有的配置都会更新为刚刚在ComfyUI中的配置,直接点击Generate就可以生成图片。如果想删除ComfyUI工作流,恢复至默认的配置,就点击Disable Custom ComfyUI Workflow按钮
在这里插入图片描述
在这里插入图片描述

4.使用presets

presets可以影响生成图片的风格化,首先下载sdxl官方preset.json文件至任意一个地方,然后点击界面下方的Presets选项卡下的Import Presets按钮,上传刚刚下载的preset.json文件,在点击import,然后在Presets选项卡就可以看到各种风格的presets配置了,官方提供的presets包含漫画、数字艺术、线条艺术、3D模型、像素艺术等一共17种风格
在这里插入图片描述
在使用presets过程中,只需要点击Presets选项卡下的卡片即可。例如下图,是我用base model配合refiner model,选择折纸风格(Origami)的presets,生成了一张具有折纸风格的漂流瓶图片
在这里插入图片描述

5.使用图生图、lora

点击界面左侧的Init Image,上传示例图片,就可以进行图生图。下图是base model,refiner model配合漫画风的presets和写实风的lora模型,根据示例图片和prompt生成的图片
在这里插入图片描述

3.总结

StableSwarmUI的使用非常灵活,除了以上介绍的使用方法,还可以在界面下方选择各种插件来组合使用,如vae、lora、embeddings、controlnets等,同一个类型的插件也可以使用多个,例如可以同时使用多个lora模型。可以在界面左侧配置参数,设定随机种子、图片大小和数量等。同时,StableSwarmUI几乎开放了所有的参数供使用者尝试,感兴趣的可以多多探索,下载自己喜欢的模型和插件,尝试各种模型组合和参数配置,生成富有想象力的图片

参考链接:https://github.com/Stability-AI/StableSwarmUI/tree/master/docs

### 回答1: scipy.stats.ttest_ind 是用来做独立样本 t 检验的函数。使用方法为:scipy.stats.ttest_ind(a, b, equal_var=True/False)。a, b 分别为两组独立样本的数据。equal_var 参数表示是否假设两组样本的方差相等,默认为 True。如果结果的 p 值小于 0.05,则可以拒绝原假设,即两组样本的均值有显著差异。 ### 回答2: scipy.stats.ttest_ind 是一个用于执行独立两样本 t 检验的函数。该函数用于比较两个独立样本的均值是否具有统计学上的显著差异。 使用 scipy.stats.ttest_ind 函数的一般步骤如下: 1. 导入所需的库和模块:首先,需要导入 scipy 和 numpy 库,以及从 scipy.stats 模块中导入 ttest_ind 函数。 2. 准备数据:准备两个独立样本的数据。可以使用 numpy 数组、Pandas 的数据框或其他数据结构来存储数据。 3. 执行 t 检验:使用 ttest_ind 函数执行独立两样本 t 检验。该函数的语法为: `scipy.stats.ttest_ind(a, b, equal_var=True)` 其中,a 和 b 是两个要比较的独立样本,equal_var 参数表示是否假设两个样本具有相同的方差。如果为 True,则假设方差相等;如果为 False,则假设方差不等。 4. 解释结果:根据 t 检验的结果,判断两个样本均值是否存在显著差异。通常需要检查返回的 p 值,如果 p 值小于预设的显著性水平(通常为 0.05),则可以拒绝原假设,即认为两个样本的均值存在显著差异。 值得注意的是,ttest_ind 函数还返回一个 t 值,表示两个样本均值之间的差异程度,以及一个表示自由度的值。 综上所述,使用 scipy.stats.ttest_ind 函数可以比较两个独立样本的均值是否存在显著差异。正确地应用该函数可以帮助我们进行统计学上的推断和决策。 ### 回答3: scipy.stats.ttest_ind是scipy库中的一个函数,用于进行两组独立样本的t检验。下面是如何使用该函数的基本步骤: 1. 导入scipy.stats模块:首先需要导入scipy库中的stats模块,该模块包含了很多统计分析的函数。 2. 创建两组样本数据:根据需要,可以创建两个长度相同的NumPy数组或Python列表,表示两组样本数据。 3. 进行t检验:使用ttest_ind函数进行t检验,该函数接受两组样本数据作为参数,并返回一个包含t统计量和p-value的元组。 示例代码如下: ```python import scipy.stats as stats import numpy as np # 创建两组样本数据 sample1 = np.array([1, 2, 3, 4, 5]) sample2 = np.array([2, 4, 6, 8, 10]) # 进行t检验 t_statistic, p_value = stats.ttest_ind(sample1, sample2) # 打印结果 print("t统计量:", t_statistic) print("p-value:", p_value) ``` 在这个示例中,我们创建了两组样本数据sample1和sample2,然后使用ttest_ind函数进行t检验,并将返回的t统计量和p-value赋给变量t_statistic和p_value。最后将结果打印出来。 需要注意的是,该函数假设两组样本数据的方差相等。如果两组样本数据的方差不相等,可以使用scipy.stats.ttest_ind函数的equal_var参数设置为False,进行Welch's t检验。修改示例代码如下: ```python # 进行Welch's t检验 t_statistic, p_value = stats.ttest_ind(sample1, sample2, equal_var=False) ``` 这样就可以使用scipy.stats.ttest_ind函数进行两组独立样本的t检验了。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值