sierpinski triangle谢尔宾斯基三角形算法介绍
谢尔宾斯基三角形(Sierpinski Triangle)的算法可以通过多种方法实现,这里将介绍几种常见的算法方法:
1. 去掉中心法
这是最基本的构造方法。步骤如下:
取一个实心的三角形(通常使用等边三角形)。
沿三边中点的连线,将三角形分成四个小三角形。
去掉中间的那个小三角形。
对其余三个小三角形重复上述步骤。
这个过程可以无限进行下去,最终得到的图形就是谢尔宾斯基三角形。
2. Chaos Game 方法
这是一种通过随机方法构造谢尔宾斯基三角形的方法:
任意取平面上三点A, B, C,组成一个三角形。
在三角形ABC内任意取一点P,并将其作为起点。
重复以下步骤:
随机选择一个顶点(A, B, 或 C)。
在当前点和所选顶点之间连线,找到这条线的中点。
将当前点移动到该中点。
随着步骤的重复,点的轨迹将逼近谢尔宾斯基三角形。
3. L系统
L系统是一种基于字符串重写系统的分形生成方法,也可以用于生成谢尔宾斯基三角形。但是,具体的生成规则较为复杂,需要一定的编程背景才能理解。
4. 编程实现
对于编程实现,可以使用递归函数来生成谢尔宾斯基三角形。例如,在JavaScript中,可以使用以下伪代码:
function sierpinski(x, y, len, depth) {
if (depth === 0) {
// 绘制小三角形
} else {
const newLen = len / 2;
sierpinski(x, y, newLen, depth - 1);
sierpinski(x + newLen, y, newLen, depth - 1);
sierpinski(x + newLen / 2, y + newLen * Math.sqrt(3) / 2, newLen, depth - 1);
}
}
5. 维度计算
谢尔宾斯基三角形的维度(豪斯多夫维)可以通过计算得到,其值为log(3)/log(2) ≈ 1.585。这表明谢尔宾斯基三角形既不是一维的,也不是二维的,而是介于这两者之间的分形结构。
总结
谢尔宾斯基三角形的算法实现方法多种多样,包括去掉中心法、Chaos Game方法、L系统以及编程实现等。每种方法都有其独特的实现方式和应用场景。在实际应用中,可以根据具体需求选择适合的算法进行实现。
sierpinski triangle谢尔宾斯基三角形算法python实现样例
以下是一个基于Python的Sierpinski Triangle(谢尔宾斯基三角形)算法的实现示例:
import turtle
def draw_triangle(points, color, my_turtle):
my_turtle.fillcolor(color)
my_turtle.up()
my_turtle.goto(points[0][0], points[0][1])
my_turtle.down()
my_turtle.begin_fill()
my_turtle.goto(points[1][0], points[1][1])
my_turtle.goto(points[2][0], points[2][1])
my_turtle.goto(points[0][0], points[0][1])
my_turtle.end_fill()
def get_midpoint(point1, point2):
return ((point1[0] + point2[0]) / 2, (point1[1] + point2[1]) / 2)
def sierpinski(points, color, my_turtle):
draw_triangle(points, color, my_turtle)
if depth > 0:
sierpinski([points[0],
get_midpoint(points[0], points[1]),
get_midpoint(points[0], points[2])],
color, my_turtle)
sierpinski([points[1],
get_midpoint(points[0], points[1]),
get_midpoint(points[1], points[2])],
color, my_turtle)
sierpinski([points[2],
get_midpoint(points[2], points[1]),
get_midpoint(points[0], points[2])],
color, my_turtle)
my_turtle = turtle.Turtle()
my_screen = turtle.Screen()
depth = 5 # 设置递归深度
points = [(-200, -200), (0, 200), (200, -200)] # 初始三角形的顶点坐标
sierpinski(points, "black", my_turtle)
my_screen.exitonclick()
该代码使用Python的turtle
库实现了一个谢尔宾斯基三角形的绘制。通过递归地绘制子三角形,我们可以实现三角形的分形绘制。在这个例子中,sierpinski()
函数负责递归地生成谢尔宾斯基三角形的各个子三角形。
代码中的depth
变量控制了递归的深度,通过调整这个变量的值,你可以改变绘制的细节。points
列表存储了初始三角形的顶点坐标,你可以根据需要调整这些坐标以改变绘制的初始形状。
运行这段代码,一个谢尔宾斯基三角形将会在图形窗口中绘制出来。你可以通过点击图形窗口来关闭程序。请注意,绘制深度较大的谢尔宾斯基三角形可能需要较长的时间和较大的计算资源。