python 实现huffman哈夫曼编码算法

huffman哈夫曼编码算法介绍

Huffman编码算法,也称为哈夫曼编码,是由David A. Huffman在1952年提出的一种用于数据压缩的编码方法。该算法通过构建基于字符频率的哈夫曼树,为不同字符生成最优的二进制编码,以实现数据的无损压缩。以下是Huffman编码算法的基本步骤:

1. 统计频率

首先,需要统计待编码数据中每个符号(可以是字符、字节或其他数据单元)的出现频率。统计频率可以通过遍历整个数据集来完成,并记录每个符号出现的次数。

2. 构建哈夫曼树

根据符号的频率构建一个特殊的二叉树,称为哈夫曼树(Huffman Tree)或编码树。构建方法如下:

将频率最低的两个符号合并为一个新节点,该节点的频率为两个节点频率之和。
将新节点插入到已有节点的集合中。
重复上述步骤,直到只剩下一个节点,即根节点为止。
在构建过程中,可以使用优先队列或最小堆来维护频率最低的节点。

3. 分配编码

从根节点开始,沿着左子树走为0,沿着右子树走为1,将0和1分别分配给左右子节点。重复这个过程,直到遍历到每个叶子节点为止。每个叶子节点的路径上的0和1的序列就是对应符号的Huffman编码。

4. 生成编码表

将每个符号及其对应的Huffman编码存储在一个编码表中,以备后续的编码和解码使用。

5. 进行编码

将原始数据中的每个符号替换为其对应的Huffman编码,生成压缩后的编码数据。由于频率高的符号具有较短的编码,而频率低的符号具有较长的编码,所以整个编码后的数据长度会相对减小。

Huffman编码的特点

Huffman编码是即时码、紧致码,编码后符号概率(0和1的概率)接近等概分布。
Huffman码没有冗余和歧义性,即每个编码都不是其他编码的前缀,这种性质被称为前缀码。
Huffman编码的码字非唯一,因为概率相同时,合并情况不唯一,每个符号对应的码长不唯一,但平均码长唯一。

huffman哈夫曼编码算法python实现样例

下面是一个使用Python实现Huffman哈夫曼编码算法的示例代码:

import heapq
from collections import defaultdict

class HuffmanNode:
    def __init__(self, char, freq):
        self.char = char
        self.freq = freq
        self.left = None
        self.right = None
    
    def __lt__(self, other):
        return self.freq < other.freq

def build_frequency_table(data):
    frequency_table = defaultdict(int)
    for char in data:
        frequency_table[char] += 1
    return frequency_table

def build_huffman_tree(frequency_table):
    priority_queue = []
    for char, freq in frequency_table.items():
        heapq.heappush(priority_queue, HuffmanNode(char, freq))
    
    while len(priority_queue) > 1:
        node1 = heapq.heappop(priority_queue)
        node2 = heapq.heappop(priority_queue)
        merged_freq = node1.freq + node2.freq
        merged_node = HuffmanNode(None, merged_freq)
        merged_node.left = node1
        merged_node.right = node2
        heapq.heappush(priority_queue, merged_node)
    
    return priority_queue[0]

def build_codewords(node, code, codewords):
    if node.char:
        codewords[node.char] = code
    else:
        build_codewords(node.left, code + "0", codewords)
        build_codewords(node.right, code + "1", codewords)

def huffman_encode(data):
    frequency_table = build_frequency_table(data)
    huffman_tree = build_huffman_tree(frequency_table)
    codewords = {}
    build_codewords(huffman_tree, "", codewords)
    encoded_data = ""
    for char in data:
        encoded_data += codewords[char]
    return encoded_data

def huffman_decode(encoded_data, huffman_tree):
    decoded_data = ""
    current_node = huffman_tree
    for bit in encoded_data:
        if bit == "0":
            current_node = current_node.left
        else:
            current_node = current_node.right
        if current_node.char:
            decoded_data += current_node.char
            current_node = huffman_tree
    return decoded_data

if __name__ == "__main__":
    data = "Huffman coding is a data compression algorithm."
    encoded_data = huffman_encode(data)
    print("Encoded data:", encoded_data)

    huffman_tree = build_huffman_tree(build_frequency_table(data))
    decoded_data = huffman_decode(encoded_data, huffman_tree)
    print("Decoded data:", decoded_data)

在这个示例中,我们首先定义了HuffmanNode类,用于表示哈夫曼树的节点。然后,我们实现了build_frequency_table函数,用于构建字符频率表。接下来,我们实现了build_huffman_tree函数,用于构建哈夫曼树。然后,我们实现了build_codewords函数,用于根据哈夫曼树构建编码表。最后,我们实现了huffman_encodehuffman_decode函数,用于进行编码和解码操作。在main函数中,我们对示例数据进行了编码和解码,并打印结果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

luthane

您的鼓励将是我创作最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值