tensorflow 报错:raise TypeError(‘{!r} is not a callable object‘.format(obj))

本文解决了一个在使用TensorFlow Estimator训练模型时出现的错误:Estimator.evaluate()方法中的input_fn参数期望一个无参数的函数,但原本的函数带有参数。通过将数据集设置为类成员变量并在调用时省略参数解决了该问题。
摘要由CSDN通过智能技术生成

raise TypeError('{!r} is not a callable object'.format(obj))

TypeError: <BatchDataset shapes: {img: (?, 64, 64, 3), label: (?, 64, 64, 1)}, types: {img: tf.float32, label: tf.float32}> is not a callable object

raise TypeError('unsupported callable') from ex

TypeError: unsupported callable

问题 使用tensorflow.estimator.Estimator训练模型时,进行模型调用的时候验证是报错.

报错代码:

eval_metric= self.estimator.evaluate(

input_fn= self._evalute_input_fn(eval_set,eval_label_set))

其中_evalute_input_fn函数定义如下:

def _evalute_input_fn(self,eval_set,eval_label_set):

    evalute_set= self.create_dataset(eval_set,eval_label_set)

evalute_set= evalute_set.batch(batch_size)

报错原因是在进行验证时,eval_input_fn要求无参数入,将验证的数据及代码变为类成员变量,调用函数时不传参,即可解决.更改如下:

调用:

eval_metric= self.estimator.evaluate(

input_fn=self._evalute_input_fn)

函数定义:

def _evalute_input_fn(self):

    evalute_set= self.create_dataset(self.eval_set, self.eval_label_set)

evalute_set= evalute_set.batch(batch_size)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值