sift 不易理解的地方

本文详细介绍了SIFT算法的关键特性,包括尺度不变性、旋转不变性和光照不变性的实现方法。通过构建高斯金字塔实现尺度空间的连续性,并通过寻找特征点的主方向确保旋转不变性。此外,还解释了如何通过调整sigma值模拟图像放缩,以及如何利用DOG空间的特征描述子去除光照影响。
摘要由CSDN通过智能技术生成
1.首先  sift  称作尺度不变,最关键的一句话是:
不同大小的物体有着不同的尺度,这个scale的表示,可以用放大缩小表示,可以用高斯blur来模拟。
2.怎么样实现高斯金子塔的尺度连续?  尺度空间连续的性质,将尺度sigma计算方法列述如下:
i为octave的塔数(几塔),s为每塔层数  ,由图片的大小决定能够有几个塔,(塔数i,层数j,sigma),这就是连续参数空间中的一个点,    i>=0 ,j>=0,j表示该塔的几层,sigma=2^i*k^j*sigma,k=2^(1/s),s为每个塔的层数,每塔的层数主要取3-5层。例如:若每塔有5层,0塔0层就是sigma,0塔1层就是2^0*[2^(1/5)]^1*sigma,该塔的最上即4层为2^0*[2^(1/5)]^4*sigma=2^(4/5)*sigma,当下一个塔降采样之后的0层就为
2^1*[2^(1/5)]^0*sigma=2*sigma.这样就实现了尺度空间的连续!
3.如何实现旋转不变性?  在局部中找到特征点的主方向,(如果存在副方向同样)将坐标系旋转至与主方向相吻合,在求其特征描述子,故此每个特征点的特征描述子都是在主方向下的描述子!
4.放缩不变性就是指的是用sigma的变化和图像size的变化进行模拟放缩的空间!
5.去除光照的影响:由于光照多数是线性的像素值相加,故此,在DOG空间进行特征描述子的归一化可以去除光照的影响!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值