sift 不易理解的地方

本文详细介绍了SIFT算法的关键特性,包括尺度不变性、旋转不变性和光照不变性的实现方法。通过构建高斯金字塔实现尺度空间的连续性,并通过寻找特征点的主方向确保旋转不变性。此外,还解释了如何通过调整sigma值模拟图像放缩,以及如何利用DOG空间的特征描述子去除光照影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.首先  sift  称作尺度不变,最关键的一句话是:
不同大小的物体有着不同的尺度,这个scale的表示,可以用放大缩小表示,可以用高斯blur来模拟。
2.怎么样实现高斯金子塔的尺度连续?  尺度空间连续的性质,将尺度sigma计算方法列述如下:
i为octave的塔数(几塔),s为每塔层数  ,由图片的大小决定能够有几个塔,(塔数i,层数j,sigma),这就是连续参数空间中的一个点,    i>=0 ,j>=0,j表示该塔的几层,sigma=2^i*k^j*sigma,k=2^(1/s),s为每个塔的层数,每塔的层数主要取3-5层。例如:若每塔有5层,0塔0层就是sigma,0塔1层就是2^0*[2^(1/5)]^1*sigma,该塔的最上即4层为2^0*[2^(1/5)]^4*sigma=2^(4/5)*sigma,当下一个塔降采样之后的0层就为
2^1*[2^(1/5)]^0*sigma=2*sigma.这样就实现了尺度空间的连续!
3.如何实现旋转不变性?  在局部中找到特征点的主方向,(如果存在副方向同样)将坐标系旋转至与主方向相吻合,在求其特征描述子,故此每个特征点的特征描述子都是在主方向下的描述子!
4.放缩不变性就是指的是用sigma的变化和图像size的变化进行模拟放缩的空间!
5.去除光照的影响:由于光照多数是线性的像素值相加,故此,在DOG空间进行特征描述子的归一化可以去除光照的影响!
内容概要:本文探讨了在微电网优化中如何处理风光能源的不确定性,特别是通过引入机会约束和概率序列的方法。首先介绍了风光能源的随机性和波动性带来的挑战,然后详细解释了机会约束的概念,即在一定概率水平下放松约束条件,从而提高模型灵活性。接着讨论了概率序列的应用,它通过对历史数据分析生成多个可能的风光发电场景及其概率,以此为基础构建优化模型的目标函数和约束条件。文中提供了具体的Matlab代码示例,演示了如何利用CPLEX求解器解决此类优化问题,并强调了参数选择、模型构建、约束添加以及求解过程中应注意的技术细节。此外,还提到了一些实用技巧,如通过调整MIP gap提升求解效率,使用K-means聚类减少场景数量以降低计算复杂度等。 适合人群:从事电力系统研究、微电网设计与运营的专业人士,尤其是那些对风光不确定性建模感兴趣的研究者和技术人员。 使用场景及目标:适用于需要评估和优化含有大量间歇性可再生能源接入的微电网系统,旨在提高系统的经济性和稳定性,确保在面对风光出力波动时仍能维持正常运作。 其他说明:文中提到的方法不仅有助于学术研究,也可应用于实际工程项目中,帮助工程师们制定更为稳健的微电网调度计划。同时,文中提供的代码片段可供读者参考并应用于类似的问题情境中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值