sift 不易理解的地方

本文详细介绍了SIFT算法的关键特性,包括尺度不变性、旋转不变性和光照不变性的实现方法。通过构建高斯金字塔实现尺度空间的连续性,并通过寻找特征点的主方向确保旋转不变性。此外,还解释了如何通过调整sigma值模拟图像放缩,以及如何利用DOG空间的特征描述子去除光照影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.首先  sift  称作尺度不变,最关键的一句话是:
不同大小的物体有着不同的尺度,这个scale的表示,可以用放大缩小表示,可以用高斯blur来模拟。
2.怎么样实现高斯金子塔的尺度连续?  尺度空间连续的性质,将尺度sigma计算方法列述如下:
i为octave的塔数(几塔),s为每塔层数  ,由图片的大小决定能够有几个塔,(塔数i,层数j,sigma),这就是连续参数空间中的一个点,    i>=0 ,j>=0,j表示该塔的几层,sigma=2^i*k^j*sigma,k=2^(1/s),s为每个塔的层数,每塔的层数主要取3-5层。例如:若每塔有5层,0塔0层就是sigma,0塔1层就是2^0*[2^(1/5)]^1*sigma,该塔的最上即4层为2^0*[2^(1/5)]^4*sigma=2^(4/5)*sigma,当下一个塔降采样之后的0层就为
2^1*[2^(1/5)]^0*sigma=2*sigma.这样就实现了尺度空间的连续!
3.如何实现旋转不变性?  在局部中找到特征点的主方向,(如果存在副方向同样)将坐标系旋转至与主方向相吻合,在求其特征描述子,故此每个特征点的特征描述子都是在主方向下的描述子!
4.放缩不变性就是指的是用sigma的变化和图像size的变化进行模拟放缩的空间!
5.去除光照的影响:由于光照多数是线性的像素值相加,故此,在DOG空间进行特征描述子的归一化可以去除光照的影响!
内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值