时间序列在数据embedding方面有哪些创新方法和工作?

时间序列数据的嵌入工作也很重要!

我们看到的很多论文,大多把注意力集中到模型结构的改进上,比如:注意力机制、编码器、解码器设计和改进等。但是,却少有人关注到时间序列数据的embedding上。

特别是Transformer架构中的自注意力层无法保留时间序列的位置信息。但同时,局部位置信息,即时间序列的顺序是极其重要的。本篇文章就整理了近期在时序数据输入嵌入方面的工作,这些工作为了增强时间序列输入的时间上下文,改进了时序数据的嵌入方式,如:固定的位置编码、通道投影嵌入、可学习的时态嵌入、带有时间卷积层的时态嵌入等。

1

论文标题:LEARNING TO EMBED TIME SERIES PATCHES INDEPENDENTLY(ICLR24)

掩蔽时间序列建模作为一种自监督表示学习策略,最近在时间序列分析领域受到了极大的关注。但作者认为,捕捉patch之间的依赖关系可能并不是时间序列表示学习的最佳策略。相反,独立学习嵌入每个patch可能会得到更好的时间序列表示。作者建议采用以下两种方法:1) 简单的patch重建任务,即在不参考其他块的情况下对每个patch进行自编码;2) 简单的patch级多层感知机(MLP),它独立地嵌入每个patch。此外,还引入补充性的对比学习,以分层的方式高效捕捉相邻时间序列的信息。该方法在时间序列预测和分类的性能上超越了现有的基于Transformer的最先进的模型,同时在参数数量以及训练和推理时间上都更为高效。

论文代码https://github.com/seunghan96/pi

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值