自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(165)
  • 收藏
  • 关注

原创 TimeMosaic:时间异质性引导的自适应粒度片段 - 分段解码时间序列预测

在更大规模的实验中,研究者使用包含 3210 亿条观测数据(321 B observations) 的大型数据集进行训练,TimeMosaic 的性能可与主流 Time-Series Foundation Models(如 Chronos 和 TimesFM)相媲美,同时显著减少了参数量和计算成本。它在编码(Encoding)和解码(Decoding)两个层面引入自适应机制,使模型能够根据时间片段的复杂程度动态调整粒度和预测策略,从而实现更高的准确性和更好的计算效率。然而,真实世界中的时间序列具有明显的。

2025-12-21 10:42:43 507

原创 CausalRivers:时间序列因果关系发现benchmark

右下方子图则呈现了易北河相同节点在 RiversEastGermany 与 RiversElbeFlood 数据集中的显著分布偏移,直观反映了洪水极端事件导致的时间序列数据分布差异,为测试因果发现方法在含外部干扰、非平稳数据场景下的性能提供了依据。但在CausalRivers构建的因果关系图中,河流呈现出完全不同的"社交网络"——有的支流会"影响"下游,有的则会"被上游影响",还有些看似无关的河流其实存在隐秘的"三角关系"。图:时间序列因果图示例,箭头标注的数字代表"因"到"果"的时间延迟(单位:小时)

2025-12-21 10:41:34 699

原创 并不是所有数据都该当标签:时间序列自监督的标签选择问题

论文标题:Not All Data are Good Labels: On the Self-supervised Labeling for Time Series Forecasting关键词:Self-supervised Learning、Time Series、Label Noise、Sample Selection我们都相信“数据越多,模型越好”。但如果这些数据里,有一半是“坏标签”呢?这篇来自清华 & 港科大的论文告诉我们——自监督学习可能正在被自己欺骗。

2025-12-20 14:38:59 973

原创 xLSTM-Mixer:基于记忆混合的多变量时间序列预测

过去几年,Transformer主导了时间序列预测的舞台,但随着 xLSTM-Mixer 等新模型的出现,研究者重新看到了循环网络的潜力。也许不是LSTM不行,而是我们还没给它足够好的结构。大家可以关注我【科学最top】,第一时间follow时序高水平论文解读!!!获取时序论文合集。

2025-12-20 14:35:49 770

原创 CATCH:ICLR 2025 最值得关注的时间序列异常检测新框架

论文标题:CATCH: Channel-Aware multivariate Time Series Anomaly Detection via Frequency Patching。

2025-12-17 20:15:48 776

原创 AAAI25|基于神经共形控制的时间序列预测模型

读本文之前,我也没有了解过“共形”预测的概念,所以特意查了资料。共形预测(Conformal Prediction, CP)是一种在任意预测模型之上构建的不确定性量化框架。通过计算样本的“非一致性分数”(衡量预测值与真实值的差异),并结合校准数据集的统计分布,在给定置信水平 (1−α) 下,生成一个预测区间或预测集合,从而保证真实结果落在其中的概率不低于 (1−α)。

2025-12-17 20:14:30 652

原创 TAFAS:面向非平稳时间序列的测试时自适应预测

这篇文章主要解决非平稳时间序列建模的问题,所谓时间序列的非平稳性,是指即数据分布随时间持续变化,即均值和方差等统计特征在整个时间范围内变化。非平稳序列带来的问题是我们往往无法用固定的统计规律或模型捕捉其长期模式,预测时易出现偏差且模型泛化能力差。如下图给出了机组平稳序列和非平稳序列的样例。

2025-12-16 20:39:02 878

原创 KDD25|探讨如何利用大模型处理不规则采样时间序列

针对含 N 个变量、各变量观测时间间隔不规则的 ISTS,文中介绍了三种典型表示方法(如图 1 所示),核心差异在于数据组织形式对模型适配性的影响。结论:序列式表示按变量将 ISTS 拆分为多个单变量序列,每个序列仅包含对应变量的真实观测时间与取值,不含冗余标记或混合信息。这种方式结构清晰,能有效减少变量间的干扰,适配 PLMs 的序列建模特性。

2025-12-16 20:38:05 1503

原创 如何使用ACF对时序数据的周期性、平稳性进行分析

时序数据切片对建模预测至关重要,ACF分析是识别周期性的有效方法。ACF通过计算滞后点间的相关系数,揭示数据的自相关性和周期性特征。解读时需关注滞后阶数、ACF值及置信区间:显著峰值表明周期性,快速衰减显示平稳性,缓慢衰减则反映非平稳性。不同数据集ACF图呈现明显差异,如月度数据在k=12处峰值反映年度周期。理想情况下模型应自适应学习周期特征,但ACF仍是重要的预处理分析工具。后续将探讨更先进的周期自适应学习方法。

2025-12-08 12:01:14 851

原创 ICML25|TQNet:如何把时序中的周期性纳入注意力机制

本文比较了时间序列预测模型CycleNet和TQNet。CycleNet通过线性模型建模周期性模式,但存在周期假设单一和依赖先验特征的局限性。TQNet继承了周期思想,在Transformer架构中引入时间查询增强的多头注意力机制(TQ-MHA),通过可学习参数生成Query捕捉全局相关性,同时从原始数据提取Key/Value保留局部特征。实验表明TQNet在电力、交通等高维数据集上实现了最优精度,且训练效率接近线性模型。研究证实结合周期先验和注意力机制能有效平衡预测精度与计算效率。

2025-12-08 12:00:17 983

原创 IJCAI25|如何平衡文本与时序信息的融合适配?

本文提出MedualTime模型,创新性地采用"文本-时序双主"多模态学习范式。该模型基于冻结预训练语言模型,通过并行挂载时序优先和文本优先双适配器,在顶层引入可学习适配令牌实现高层模态融合。实验表明,MedualTime在医疗数据集上性能显著提升:有监督学习平均准确率提高8%,无训练参数仅100万,训练效率接近轻量级模型。同时,其出色的少样本迁移能力验证了模型对医疗场景细粒度标签稀缺问题的适应性。这种兼顾性能、效率和平等模态融合的设计为医疗多模态学习提供了新思路。

2025-12-06 12:30:10 641

原创 时序代码精读:NIPS24|CycleNet代码的精读笔记

本文深入解析了CycleNet的核心代码实现,重点介绍了其创新性的周期性建模方法。模型通过将时间序列分解为循环项和残差项,先学习固有周期模式,再预测剩余残差项,最后合并得到预测结果。文章详细剖析了forward函数和RecurrentCycle类的实现细节,包括周期索引计算和残差预测过程。实验表明CycleNet在显性周期性数据上表现优异,但对周期长度设置敏感,在复杂数据场景下存在局限性。该模型以简洁架构实现高效周期建模,其核心思路和优化技巧值得学习。

2025-12-06 12:27:30 819

原创 KDD25|BLAST:面向通用预测的平衡采样时序语料库

本文针对通用时间序列预测模型训练数据多样性不足的问题,提出BLAST平衡采样方法。研究发现现有数据集存在严重不平衡分布(3个数据集占88.2%),导致模式重复。BLAST通过四阶段流程:构建基础语料库→7类统计特征刻画→UMAP降维→网格采样与混合(100×100网格),有效提升数据多样性。实验表明,该方法仅用1/16计算资源即超越原模型性能,验证损失降低35%,为时间序列预测提供了高效可靠的预训练方案。

2025-12-05 18:57:48 815

原创 自适应多尺度分解框架:时间序列预测的新范式

本文提出自适应多尺度分解(AMD)框架,通过MLP架构实现高效的多尺度时序建模。核心创新包括:1)多尺度分解机制,将时间序列分解为不同粒度模式;2)自适应融合模块,动态加权各尺度预测贡献。实验表明,AMD在7个数据集上优于现有方法,长期预测MSE达0.223(Weather),短期预测MAE为0.198(PEMS04)。该方法兼具Transformer的表达能力和MLP的效率,为时序预测提供了新思路。未来可探索频域分解等方向进一步优化性能。

2025-12-05 18:55:59 940

原创 傅里叶基映射:一种用于时间序列预测的时频学习框架

本文提出傅里叶基映射(FBM)框架,解决现有基于傅里叶变换的时间序列预测方法存在的起始周期不一致和序列长度不一致问题。FBM通过傅里叶基展开和时频空间映射整合时频特征,在保留时间特性的同时提取明确频率特征。核心创新包括构建时频特征的计算方法,以及由趋势、季节性和交互三个模块组成的FBM-S协同架构。实验在12个真实数据集上验证了FBM系列模型,特别是FBM-S在长短期预测任务中的优越性能。该方法支持与多种神经网络集成,只需调整初始投影层即可提升预测效果。

2025-12-04 12:53:29 686

原创 PMLR25|Hi-Patch:用于不规则多元时间序列的分层Patch图神经网络

摘要:本文提出Hi-Patch,一种分层补丁图网络,用于不规则多元时间序列(IMTS)建模。针对现有多尺度方法忽视变量异质性(如不同采样率)的问题,Hi-Patch通过观测编码器保留原始数据特性,并采用双层图结构:patch内图层捕捉密集变量的细粒度局部依赖,patch间图层分层聚合稀疏与密集变量的全局多尺度特征。实验表明,Hi-Patch在预测(如HumanActivity数据集MSE 2.57×10⁻³)和分类(P19数据集AUROC 92.1%)任务中显著优于基线,72项指标中62项最优。消融实验验证

2025-12-04 12:51:03 1287

原创 时间序列的“语言”:从语言模型视角理解时序基础模型

摘要: 本文提出“时间的语言”假说,将时间序列基础模型类比为语言模型,认为时间序列patch(短片段)类似于语言中的token,但在潜在空间中表现为分布而非单点。通过构建时间序列“词汇表”并分析其统计特性,研究发现时间序列token遵循Zipf定律,且其组合呈现稀疏语法结构,验证了时间序列数据的类语言特征。这一发现为跨域时序模型的迁移能力提供了理论支持,表明模型通过学习“时间的语言”实现对动态模式的抽象表示。

2025-11-30 08:48:22 683

原创 AAAI25|xPatch:基于指数季节-趋势分解的双流时间序列预测方法

本文提出xPatch模型,通过创新性双流架构提升时间序列预测性能。针对Transformer的时序信息保留不足问题,xPatch采用指数移动平均(EMA)进行季节-趋势分解,避免传统方法引入的边界偏差。模型包含线性MLP流处理趋势分量和CNN流处理季节性分量,结合通道独立和patch技术。实验表明,xPatch在9个真实数据集上超越基线模型,MSE和MAE分别提升2.46%和2.34%,且计算效率优于Transformer类模型。创新点包括EMA分解、双流设计、反正切损失函数和Sigmoid学习率调整策略。

2025-11-30 08:45:30 512

原创 效率优先|近三年时序MLP线性模型类工作合集汇总

时间序列预测研究新进展:近期多项工作通过创新架构设计提升模型性能与效率。Patch-MLP类模型(xPatch、HDMixer等)采用双流或可扩展Patch技术优化时序模式捕捉;频域方法(FreTS、FilterNet等)利用傅里叶变换实现高效信号处理;轻量化设计(SparseTSF、FITS等)以极简参数(<10k)达到SOTA性能;周期建模(CycleNet)和分解技术(SSCNN)有效提取时序特征。值得注意的是,LTSF-Linear以单层线性模型超越复杂Transformer,引发对模型复杂度

2025-11-26 23:10:01 734

原创 OLinear:正交变换域中的时间序列预测线性模型

【论文摘要】OLinear提出了一种基于正交变换域的线性时序预测模型,通过数据自适应的正交矩阵将时域序列投影到去相关特征空间,有效解决了传统方法(如Transformer)在时序依赖建模和多元相关性捕捉方面的局限性。模型采用RevIN层消除非平稳性,结合创新的NormLin线性层(计算复杂度仅为自注意力的一半)和双学习者架构(CSL+ISL),在24个基准测试中MSE平均降低12.7%,训练效率提升60-80%,内存占用减半。该正交变换机制作为通用插件可增强现有模型性能,尤其在处理高维数据和噪声抑制方面表现

2025-11-26 23:07:33 787

原创 ICML2025时间序列论文整理分享

ICML会议是机器学习领域的顶级盛会,ICML2025将于2025年在温哥华举行。会议收录的时间序列研究论文展现了该领域的前沿进展,主要包括:预测方法创新(如SeFT、TimeGrad模型)、表示学习(SOM-CPC、TimeSiam等框架)、因果分析(特征选择与因果关系推断)、应对数据复杂性的方法(处理不规则采样和缺失数据),以及与其他领域的交叉融合(如结合大语言模型)。这些研究推动了时间序列分析技术的发展,在多个领域发挥重要作用。

2025-11-23 20:10:01 724

原创 从新闻到预测:基于大语言模型时序预测中的迭代事件推理

摘要:本文提出一种基于大语言模型(LLM)的时间序列预测方法,通过整合外部新闻数据提升预测准确性。研究利用LLM代理进行新闻筛选与推理,将相关新闻与时间序列数据结合微调模型,形成"预测-评估-更新"的闭环优化流程。实验表明,该方法在电力需求、金融等受事件影响显著的领域表现优异,但对自然主导的领域(如气象)适用性有限。未来将聚焦新闻归因分析和输入优化。论文代码已开源。(149字)

2025-11-23 20:08:17 1345

原创 记录假期尝试用大模型驱动自动挖掘和优化时序量化因子

一句话概括:因子是量化交易中用于解释资产收益或风险的量化指标或特征,通常代表影响价格波动的关键变量。因子挖掘是量化投资领域的关键环节,指通过数据分析、金融理论及算法模型,从海量市场数据(如价格、成交量、财务指标等)中筛选、构建能有效刻画资产价格变动规律或预测未来走势的特征变量(即因子)。此外,挖掘出因子后,还要对其有效性、稳定性、逻辑合理性进行检验与优化,最终将其应用于投资策略构建,以实现超额收益获取或风险控制的过程。因子回测框架有alphalens,还有一些在线平台也提供回测。

2025-08-09 11:03:43 1186

原创 近三年时间序列大模型相关工作合集汇总

【时间序列与大语言模型交叉研究前沿综述】近年来,时间序列与LLM的融合研究取得重要突破,主要呈现五大发展方向: 基础架构创新:ChatTS首创时序多模态推理,MOTOR构建医疗事件预测基础模型,Lag-Llama通过滞后值增强预测能力,UniTS实现多任务统一架构,Timer以生成式框架处理跨任务需求。 数据生成突破:MOMENT构建跨域预训练数据集TimeseriesPile,Chronos采用标记化增强泛化,MOIRAI在270亿条数据的LOTSA上突破单数据集限制。 LLM适配技术:TEST通过嵌入对

2025-08-09 09:35:12 1123

原创 时序论文45| ExoLLM:大语言模型增强外部变量的时序预测模型

论文标题:Exploiting Language Power for Time Series Forecasting with Exogenous Variables。

2025-08-03 20:47:20 770

原创 时序论文44 | TwinsFormer:通过两个交互组件重构时间序列内在依赖关系

摘要: 本文提出Twinsformer模型,用于时间序列预测。该模型基于Transformer架构,通过两个交互组件分解并重构序列的趋势和季节成分,以捕捉内在依赖关系。与现有方法不同,Twinsformer采用可训练的分解策略,通过门控机制和残差学习优化季节与趋势信息的交互,避免冗余信号。实验表明,Twinsformer在七个现实场景中的预测性能优于现有方法,为时间序列预测提供了有效的交互式学习方案。

2025-08-03 20:46:19 480

原创 记录和分享抓取的数字货币和大A时序数据

本文分享数字货币量化研究资源,包含BTC等加密货币1小时和日度数据及Python代码。通过Binance API获取历史K线数据,支持自定义币种、时间周期和数据量,并保存为CSV文件。文中推荐使用pandas_ta计算技术指标,并介绍alphalens工具包进行因子分析,包括IC分析、收益率分析等功能,帮助量化金融研究。需要安装第三方依赖库后即可使用代码获取数据进行分析。

2025-07-26 12:17:05 466

原创 使用cherry studio离线搭建私人知识库流程记录

本文介绍了如何在离线环境下搭建个人知识库,使用ollama管理本地大模型(如DeepSeek、千问7B)和bge-m3嵌入模型。通过魔塔社区下载GGUF格式模型文件,创建modelfile配置文件导入ollama,最后在CherryStudio中配置知识库实现离线检索。该方案具有数据隐私保护、高效知识管理等优势,适合需要自主掌控数据的用户。文末提供了相关工具的下载链接。

2025-07-26 12:15:14 823

原创 时序顶会基础创新知识点-小波变换篇上

前面的文章我们总结了,但FFT实际有其局限性,所以最近陆续在学习小波变换,感觉小波变换要比傅立叶变换更加复杂,所以预计本篇文章会冗长一些。此外,文章不少代码参考了网络博客,因为博客质量良莠不齐,且不少内容是互相转载,从繁多内容中找到有价值的部分,我花了不少时间。我希望能讲清楚小波变换,此外尽量把参考源写清楚。

2025-07-21 21:01:55 1366

原创 时序论文43 | WPMixer:融合小波分解的多分辨率长序列预测模型

本文提出WPMixer模型,通过结合小波变换与Patch技术改进时间序列预测。该方法利用多级小波分解提取不同分辨率的特征,并采用独立分支处理各频段信息,避免混合损失。模型包含Patch嵌入、混合器模块等组件,有效整合局部与全局特征。实验表明,WPMixer在多个数据集上优于现有方法,计算效率提升显著(GFLOPs降低90%),且具有更好的稳健性。消融研究验证了模型各模块的有效性,并确定了关键参数的最优配置。

2025-07-21 20:58:51 669

原创 SparseTSF:用 1000 个参数进行长序列预测建模

论文标题:SparseTSF: Modeling Long-term Time Series Forecasting with 1k Parameters代码链接:https://github.com/lss-1138/SparseTSF本文要介绍的SparseTSF,是一个极其轻量化的长期时间序列预测(LTSF)模型,旨在以最少的计算资源(1000个参数)应对在长时间跨度内对复杂时间依赖关系进行建模的挑战。

2025-07-20 20:35:22 870

原创 微软突破跨领域应用局限,提出时序生成模型TimeDP

论文标题:ChatTime: A Multimodal Time Series Foundation Model代码链接:https://github.com/ForestsKing/ChatTime时间序列生成模型在数据增强、隐私保护等方面至关重要,但现有模型多针对单一领域。虽利用多领域数据提升泛化性在其他领域有效,却因不同时间序列模式差异大,在时间序列建模中面临挑战。

2025-07-20 20:33:16 861

原创 ChatTime:多模态时间序列基础模型

从本质上来说,用于预测下一个单词的语言模型和用于预测下一个值的时间序列模型,都是对历史数据的序列结构进行建模,以预测未来情况。两者的核心都是一个 n 阶马尔可夫过程。本文构建的 ChatTime并时间序列概念化为一门外语(通过归一化和离散化,将连续无界的时间序列转换为一组有限的离散值,然后通过添加标记字符将它们表征为外语单词)。使用与词汇扩展相同的方法对预训练的大语言模型进行持续预训练和指令微调,无需从头开始训练或改变模型架构。

2025-07-19 20:58:47 655

原创 Patch-wise Structural:一种引入局部统计特性的时序预测损失函数

论文标题:Patch-wise Structural Loss for Time Series Forecasting代码链接:https://github. com/Dilfiraa/PS_Loss。

2025-07-19 20:56:56 880

原创 对patch深入理解下篇:Patch+LSTM实现以及改进策略整理

我在去年11月份写了,主要介绍patch的原理和代码实现过程。文章发布后很多朋友催更下篇,其实一直在积累素材,因为介绍完原理和实现之后,下一步肯定是要考虑如何改进。在这之前,首先,我们接着上一篇的内容,实现了一个LSTM+patch的例子,结果表明加上Patch之后确实对LSTM在各指标和预测长度上均有明显的效果提升。然后,本篇文章还重点介绍了最近一段时间我读到的对patch的几种改进策略,以及自己的一些思考。

2025-04-24 20:08:43 1473

原创 序论文42 | patch+MLP用于长序列预测

论文标题:Unlocking the Power of Patch: Patch-Based MLP for Long-Term Time Series Forecasting代码链接:https://github.com/TangPeiwang/PatchMLP(后台回复“交流”加入讨论群,回复“资源”获取2024年度论文讲解合集)

2025-04-24 20:03:02 1080

原创 时序论文41 | Medformer:基于多粒度patch的时序分类模型

论文标题:Medformer: A Multi-Granularity Patching Transformer for Medical Time-Series Classification代码链接:https://github.com/DL4mHealth/Medformer.(后台回复“交流”加入讨论群,回复“资源”获取2024年度论文讲解合集)

2025-02-27 22:31:58 1133 1

原创 时序论文40 | 将不规则采样时间序列转换为图像,利用预训练视觉Transformer进行分类

这篇论文提出了一种简单而有效的方法,将不规则采样时间序列转换为线图图像,并利用预训练的视觉变换器进行分类。实验结果表明,该方法在处理不规则采样时间序列方面表现优异,并且在常规时间序列数据上也取得了良好的效果。该方法展示了将计算机视觉技术应用于时间序列建模的潜力,并为未来的研究提供了新的方向。一些疑问和值得探索的问题:是否存在其他更可控和准确的绘图方法或不同的图像表示方式?是否有更好的策略发挥预训练的视觉大模型在时间序列的作用?大家可以关注我【科学最top】,第一时间follow时序高水平论文解读!!!

2025-02-27 22:31:02 1081

原创 时序论文37 | DUET:双向聚类增强的多变量时间序列预测

多变量时间序列预测(MTSF)在金融投资、能源管理、天气预测和交通优化等领域具有重要应用。然而,现实中的时间序列通常面临两大挑战:时间模式的异质性,即由于外部因素的影响,真实时间序列往往表现出非平稳性(Temporal Distribution Shift, TDS),导致其分布和模式发生显著变化;通道间的复杂关系,即不同通道(变量)之间通常存在复杂且交错的相关性,包括显著相关的通道、噪声通道以及无关通道,这种复杂性使得精准建模变得尤为困难。

2025-02-03 11:26:51 2119

原创 时序论文39 | 频域MLP在时间序列预测中更为有效

篇论文提出了一种新的频率域MLPs架构,用于时间序列预测。通过重新设计频率域MLPS,能够有效捕捉时间序列的全局依赖性和能量压缩特性。实验结果表明,FreTS在短期和长期预测任务中均表现出色,具有高效性和鲁棒性。该研究为未来在时间序列建模中应用MLPs提供了新的思路和基础大家可以关注我【科学最top】,第一时间follow时序高水平论文解读!!!,后台回复“交流”加入讨论群,回复“资源”获取2024年度论文讲解合集。

2025-02-03 11:24:02 1092

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除