这是以前做过的一道题目,只不过那时候瞎来,看了别人的题解是另一种方法,这次纯自己做出的,就是简单的解线性同余方程
不打解析过程了,只打一个解线性同余方程的方法,自己以后回顾这道题目的时候可以看看思考做:
x≡b1(mod m1)
x≡b2(mod m2)
令m=[m1,m2]
首先此方程有解的充分必要条件是 (m1,m2) | (b1-b2),此时方程仅有一个小于0的非负整数解,
式子1:等价于 x=b1+m1y1;
式子2:等价于 x=b2+m2y2;
联立可得 b1+m1y1=b2+m2y2,移项 m2y2-m1y1=b1-b2,一看就是用扩展欧几里德来解决了
给例子
x≡r1(mod a1)
x≡r2(mod a2)
x≡r3(mod a3)
.
.
.
x≡rn(mod an);
bool flag=false;
scanf("%I64d %I64d",&a1,&r1);
for(int i=1;i<n;i++)
{
scanf("%I64d %I64d",&a2,&r2);
LL a=a1,b=a2,c=r2-r1;
LL x0,y0;
LL gcd=exgcd(a,x0,b,y0);
if(c%gcd!=0)
flag=true;
LL MOD=b/gcd;
x0=((x0*c/gcd)%MOD+MOD)%MOD;
r1=a1*x0+r1;
a1*=(a2/gcd);
}
if(flag)
puts("-1");
else
printf("%I64d\n",r1);
接下来本题代码
#include<iostream>
#include<cstdio>
#include<list>
#include<algorithm>
#include<cstring>
#include<string>
#include<queue>
#include<stack>
#include<map>
#include<vector>
#include<cmath>
#include<memory.h>
#include<set>
#define ll long long
#define LL __int64
#define eps 1e-8
#define e 2.718281828
//const ll INF=9999999999999;
#define M 400000100
#define inf 0xfffffff
using namespace std;
//vector<pair<int,int> > G;
//typedef pair<int,int> P;
//vector<pair<int,int>> ::iterator iter;
//
//map<ll,int>mp;
//map<ll,int>::iterator p;
//
//vector<int>G[30012];
LL exgcd(LL a,LL &x,LL b,LL &y)
{
if(b==0)
{
x=1;
y=0;
return a;
}
LL r=exgcd(b,x,a%b,y);
LL tmp=x;
x=y;
y=tmp-a/b*y;
return r;
}
int main(void)
{
int t;
LL a1,r1,a2,r2;
while(cin>>t)
{
bool flag=false;
scanf("%I64d %I64d",&a1,&r1);
for(int i=1;i<t;i++)
{
scanf("%I64d %I64d",&a2,&r2);
LL a=a1,b=a2,c=r2-r1;
LL x0,y0;
LL gcd=exgcd(a,x0,b,y0);
if(c%gcd!=0)
flag=true;
LL MOD=b/gcd;
x0=((x0*c/gcd)%MOD+MOD)%MOD;
r1=a1*x0+r1;
a1*=(a2/gcd);
}
if(flag)
puts("-1");
else
printf("%I64d\n",r1);
}
}