CVPR超分辨率整理
cvpr2020
- Zooming Slow-Mo: Fast and Accurate One-Stage Space-Time Video Super-Resolution
论文地址:https://arxiv.org/abs/2002.11616 - Closed-loop Matters: Dual Regression Networks for Single Image Super-Resolution
论文地址:https://arxiv.org/abs/2003.07018
论文代码:https://github.com/guoyongcs/DRN - Structure-Preserving Super Resolution with Gradient Guidance
论文地址:https://arxiv.org/pdf/2003.13081.pdf
code:https://github.com/Maclory/SPSR - Light Field Spatial Super-resolution via Deep Combinatorial Geometry Embedding and Structural Consistency Regularization
论文地址:https://arxiv.org/abs/2004.02215 - Deep unfolding network for image super-resolution
paper: https://arxiv.org/pdf/2003.10428.pdf
code: https://github.com/cszn/USRNet - PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models
paper: https://arxiv.org/pdf/2003.03808.pdf - EventSR: From Asynchronous Events to Image Reconstruction, Restoration, and Super-Resolution via End-to-End Adversarial Learning
paper: https://arxiv.org/pdf/2003.07640.pdf - Zooming Slow-Mo: Fast and Accurate One-Stage Space-Time Video Super-Resolution
paper: https://arxiv.org/abs/2002.11616
code: https://github.com/Mukosame/Zooming-Slow-Mo-CVPR-2020 - Meta-Transfer Learning for Zero-Shot Super-Resolution
paper:https://arxiv.org/abs/2002.12213 - Rethinking Data Augmentation for Image Super-resolution: A Comprehensive Analysis and a New Strategy
paper: https://arxiv.org/abs/2004.00448
code: https://github.com/clovaai/cutblur
本文精选了CVPR2020中关于超分辨率的前沿研究,包括ZoomingSlow-Mo、Closed-loop Matters、Structure-Preserving SuperResolution等算法,覆盖视频、图像及事件超分辨率,探讨深度学习在不同场景下的应用与创新。
1577

被折叠的 条评论
为什么被折叠?



