hdu3117(斐波那契数列+矩阵快速幂)

题目链接:hdu3117

大意是让输出斐波那契数列的f(n)的前4位和后4位,如果不足8位直接输出就行了

求后4位的方法就是用矩阵快速幂的方法,求前4位----->解法

斐波那契数列的前39个数的位数都小于等于8,f(40)的位数为9

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cstdlib>
#include <cmath>
using namespace std;
#define mod 10000
double ss;
int n;
struct node
{
    int map[2][2];
}unit,s;
void front()
{
    double ans = -0.5*log(5.0)/log(10.0)+((double)n)*log(ss)/log(10.0);
    ans -= floor(ans);
    ans = pow(10.0,ans);
    while(ans < 1000)
    ans *= 10;
    printf("%04d",(int)ans);
}
node Mul(node a,node b)
{
    node c;
    int i,j,k;
    for(i = 0; i < 2; i ++)
    for(j = 0; j < 2; j ++)
    {
        c.map[i][j] = 0;
        for(k = 0; k < 2; k ++)
        c.map[i][j] += a.map[i][k]*b.map[k][j];
        c.map[i][j] %= mod;
    }
    return c;
}
void Matrix()
{
    while(n)
    {
        if(n&1) unit = Mul(unit,s);
        n >>= 1;
        s = Mul(s,s);
    }
    printf("%04d\n",unit.map[0][1]);
}
int main()
{
    int i;
    int f[40]={0,1};
    for(i = 2; i < 40; i ++)
    f[i] = f[i-1] + f[i-2];
    ss = (sqrt(5.0)+1.0)/2.0;
    while(~scanf("%d",&n))
    {
        if(n < 40)
        {
            printf("%d\n",f[n]);
            continue;
        }
        unit.map[0][0] = 1 ; unit.map[0][1] = 0;
        unit.map[1][0] = 0 ; unit.map[1][1] = 1;

        s.map[0][0] = 1 ; s.map[0][1] = 1;
        s.map[1][0] = 1 ; s.map[1][1] = 0;
        front();
        printf("...");
        Matrix();
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值