题目链接:hdu3117
大意是让输出斐波那契数列的f(n)的前4位和后4位,如果不足8位直接输出就行了
求后4位的方法就是用矩阵快速幂的方法,求前4位----->解法
斐波那契数列的前39个数的位数都小于等于8,f(40)的位数为9
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cstdlib>
#include <cmath>
using namespace std;
#define mod 10000
double ss;
int n;
struct node
{
int map[2][2];
}unit,s;
void front()
{
double ans = -0.5*log(5.0)/log(10.0)+((double)n)*log(ss)/log(10.0);
ans -= floor(ans);
ans = pow(10.0,ans);
while(ans < 1000)
ans *= 10;
printf("%04d",(int)ans);
}
node Mul(node a,node b)
{
node c;
int i,j,k;
for(i = 0; i < 2; i ++)
for(j = 0; j < 2; j ++)
{
c.map[i][j] = 0;
for(k = 0; k < 2; k ++)
c.map[i][j] += a.map[i][k]*b.map[k][j];
c.map[i][j] %= mod;
}
return c;
}
void Matrix()
{
while(n)
{
if(n&1) unit = Mul(unit,s);
n >>= 1;
s = Mul(s,s);
}
printf("%04d\n",unit.map[0][1]);
}
int main()
{
int i;
int f[40]={0,1};
for(i = 2; i < 40; i ++)
f[i] = f[i-1] + f[i-2];
ss = (sqrt(5.0)+1.0)/2.0;
while(~scanf("%d",&n))
{
if(n < 40)
{
printf("%d\n",f[n]);
continue;
}
unit.map[0][0] = 1 ; unit.map[0][1] = 0;
unit.map[1][0] = 0 ; unit.map[1][1] = 1;
s.map[0][0] = 1 ; s.map[0][1] = 1;
s.map[1][0] = 1 ; s.map[1][1] = 0;
front();
printf("...");
Matrix();
}
return 0;
}