非常好的一道题目,包括了f[n]=f[n-1]+f[n-2]的递推计算、前4位、后四位值的计算。
前39位利用递推即可。
39位之后,求前四位利用公式,s=(1/sqrt(5))*(1+sqrt(5))^i,d.xxx=10^log10(s)-(int)log10(s)+3; d即为前4位的值
后四位的值利用矩阵连乘求得。
但值得注意的是求后四位的时候可能出现123,三位的情况,因为倒数第四位可能为0,所以在输出的时候应该小心!
#include <iostream>
#include <cstdio>
#include <cmath>
using namespace std;
#define MAX 2
#define Mod 10000
int f[40];
typedef struct
{
int m[MAX][MAX];
}Matrix;
Matrix P={0,1,1,1};
Matrix I={1,0,0,1};
Matrix matrixmul(Matrix a,Matrix b) //矩阵乘法
{
int i,j,k;
Matrix c;
for (i = 0 ; i < MAX; i++)
for (j = 0; j < MAX;j++)
{
c.m[i][j] = 0;
for (k = 0; k < MAX; k++)
c.m[i][j] += (a.m[i][k] * b.m[k][j])%Mod;
c.m[i][j] %= Mod;
}
return c;
}
Matrix quickpow(long long n)
{
Matrix m = P, b = I;
while (n >= 1)
{
if (n & 1)
b = matrixmul(b,m);
n = n >> 1;
m = matrixmul(m,m);
}
return b;
}
int main()
{
int i,n,ans1,ans2;
double s,t,tmp;
f[0]=0;f[1]=1;f[2]=1;
for(i=3;i<=39;i++)
f[i]=f[i-1]+f[i-2];
while(scanf("%d",&n)!=EOF)
{
if(n<=39)
cout<<f[n]<<endl;
else
{
s=(1+sqrt(5.0))/2;
tmp=log10(1/sqrt(5.0))+n*log10(s);
t=tmp-(int)tmp+3;
ans1=pow(10,t);
while(ans1<1000)
ans1*=10;
Matrix d;
d=quickpow(n);
ans2=d.m[0][1];
printf("%d...%04d\n",ans1,ans2);
}
}
return 0;
}