MXNet官方文档中文版教程(8):使用预训练模型预测

本教程介绍如何使用预训练模型识别图像中的对象,以及如何进行特征提取。

前提条件

为了完成以下教程,我们需要:

  • MXNet:安装教程
    -Python Requests, Matplotlib and Jupyter Notebook.
$ pip install requests matplotlib jupyter opencv-python

 
 
 
  • 1
  • 2

载入

我们首先下载一个预训练的,在完整的ImageNet数据集上训练的152层的ResNet模型,该数据集拥有超过1000万张图像和1万个类别。预训练模型包含两部分,包含模型定义的json文件和包含参数的二进制文件。 此外,还可能有一个用于标签的文本文件。

import mxnet as mx
path='http://data.mxnet.io/models/imagenet-11k/'
[mx.test_utils.download(path+'resnet-152/resnet-152-symbol.json'),
 mx.test_utils.download(path+'resnet-152/resnet-152-0000.params'),
 mx.test_utils.download(path+'synset.txt')]
 
 
 
  • 1
  • 2
  • 3
  • 4
  • 5

接下来,我们载入下载的模型。注意:如果GPU可用,我们可以用mx.gpu() 替换所有出现的mx.cpu(),以加速计算。

sym, arg_params, aux_params = mx.model.load_checkpoint('resnet-152', 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值