python练习——二叉树

二叉树练习——二叉树的中序遍历、前序遍历和后序遍历

二叉树

二叉树结构是一个节点上最多有两个子树的树结构。定义二叉树是用指针来定义树中的每个节点,包括一个节点值、一个指向左子树的左指针和一个指向右子树的右指针。如图所示

在这里插入图片描述
代码如下所示

class TreeNode:
    def __init__(self, x):
        self.val = x
        self.left = None
        self.right = None

假如有一棵二叉树如下图所示

在这里插入图片描述
中序遍历就是按照“左节点——根节点——右节点”这样的顺序进行遍历,以上图为例,中序遍历的结果为
[ 左 子 树 , 1 , 右 子 树 ] = [ [ 左 子 树 , 2 , 右 子 树 ] , 1 , [ 左 子 树 , 3 , 右 子 树 ] ] = [ [ [ 左 子 树 , 4 , 右 子 树 ] , 2 , [ 左 子 树 , 5 , 右 子 树 ] ] , 1 , [ [ 左 子 树 , 6 , 右 子 树 ] , 3 , [ 左 子 树 , 7 , 右 子 树 ] ] ] = [ 8 , 4 , 2 , 5 , 9 , 1 , 3 , 6 , 10 , 7 ] \begin{aligned} &\left[ 左子树,1,右子树 \right]\\ =&\left[ \left[ 左子树,2,右子树\right],1,\left[ 左子树,3,右子树 \right] \right]\\ =&\left[ \left[ \left[左子树,4,右子树\right],2,\left[左子树,5,右子树\right]\right],1,\left[ \left[左子树,6,右子树\right],3,\left[左子树,7,右子树\right] \right] \right]\\ =&\left[8,4,2,5,9,1,3,6,10,7\right] \end{aligned} ===[,1,][[,2,],1,[,3,]][[[,4,],2,[,5,]],1,[[,6,],3,[,7,]]][8,4,2,5,9,1,3,6,10,7]
前序遍历就是按照“根节点——左节点——右节点”这样的顺序进行遍历,以上图为例,前序遍历的结果为
[ 1 , 左 子 树 , 右 子 树 ] = [ 1 , [ 2 , 左 子 树 , 右 子 树 ] , [ 3 , 左 子 树 , 右 子 树 ] ] = [ 1 , [ 2 , [ 4 , 左 子 树 , 右 子 树 ] , [ 5 , 左 子 树 , 右 子 树 ] ] , [ 3 , [ 6 , 左 子 树 , 右 子 树 ] , [ 7 , 左 子 树 , 右 子 树 ] ] ] = [ 1 , 2 , 4 , 8 , 5 , 9 , 3 , 6 , 10 , 7 ] \begin{aligned} &\left[ 1,左子树,右子树 \right]\\ =&\left[1, \left[ 2,左子树,右子树\right],\left[ 3,左子树,右子树 \right] \right]\\ =&\left[ 1,\left[2, \left[4,左子树,右子树\right],\left[5,左子树,右子树\right]\right],\left[ 3,\left[6,左子树,右子树\right],\left[7,左子树,右子树\right] \right] \right]\\ =&\left[1,2,4,8,5,9,3,6,10,7\right] \end{aligned} ===[1,,][1,[2,,],[3,,]][1,[2,[4,,],[5,,]],[3,[6,,],[7,,]]][1,2,4,8,5,9,3,6,10,7]
后序遍历就是按照“左节点——右节点——根节点”这样的顺序进行遍历,以上图为例,后序遍历的结果为
[ 左 子 树 , 右 子 树 , 1 ] = [ [ 左 子 树 , 右 子 树 , 2 ] , [ 左 子 树 , 右 子 树 , 3 ] , 1 ] = [ [ [ 左 子 树 , 右 子 树 , 4 ] , [ 左 子 树 , 右 子 树 , 5 ] , 2 ] , [ [ 左 子 树 , 右 子 树 , 6 ] , [ 左 子 树 , 右 子 树 , 7 ] , 3 ] , 1 ] = [ 8 , 4 , 9 , 5 , 2 , 10 , 6 , 7 , 3 , 1 ] \begin{aligned} &\left[ 左子树,右子树,1 \right]\\ =&\left[ \left[ 左子树,右子树,2\right],\left[ 左子树,右子树,3 \right],1 \right]\\ =&\left[ \left[ \left[左子树,右子树,4\right],\left[左子树,右子树,5\right],2\right],\left[ \left[左子树,右子树,6\right],\left[左子树,右子树,7\right],3 \right] ,1\right]\\ =&\left[8,4,9,5,2,10,6,7,3,1\right] \end{aligned} ===[,,1][[,,2],[,,3],1][[[,,4],[,,5],2],[[,,6],[,,7],3],1][8,4,9,5,2,10,6,7,3,1]

Leetcode二叉树的中序遍历

问题描述
给定一个二叉树,返回它的中序遍历。

示例
输入:[1,null,2,3]
输出:[1,3,2]

思考
定义一个栈,从树的根节点开始,沿着左子树开始遍历,并将遍历到的左子节点存到栈中。当这一条路线上的左子节点全部存入栈中后,开始出栈,并将当前树节点指针指向右子节点,并继续从该右子节点继续将左子节点压栈出栈

具体代码如下

class Solution:
    def inorderTraversal(self, root: TreeNode) -> List[int]:
    	order_result = [] #储存排序结果
    	read_tree = [] #用来将读到的树节点进行存储的栈
    	current_node = root
    	while current_node != None or len(read_tree) != 0:
    		while current_node != None:
    			#找到每一树枝上最左边的节点,并把路径上的树节点存入栈中
    			read_tree.append(current_node)
    			current_node = current_node.left
    		#当读取到每条路径上的最左边的节点后,
    		#将栈中最后进入的节点进行出栈,也就是该路径上最左边的节点,
    		#然后从当前节点下遍历它的右子树
    		data = read_tree.pop()
    		order_result.append(data.val)
    		current_node = data.right
    	return order_result

Leetcode二叉树的前序遍历

问题描述
给定一个二叉树,返回它的前序遍历。

示例
输入:[1,null,2,3]
输出:[1,2,3]

思考
定义一个栈,从树的根节点开始,沿着左子树开始遍历,并将遍历到的左子节点存到栈中,同时将当前节点的值进行存储。这样做是因为在从根遍历的过程中,每经过的节点都是该节点子树的根节点。前序遍历就是先将根节点进行存储。当这一条路线上的左子节点全部存入栈中后,开始出栈,并将当前树节点指针指向右子节点,并继续从该右子节点进行上述操作

具体代码如下

class Solution:
    def preorderTraversal(self, root: TreeNode) -> List[int]:
    	order_result = []
    	read_tree = []
    	current_node = root
    	while current_node != None or len(read_tree) != 0:
    		while current_node != None:
    			#将遍历到的当前节点值存入列表,同时将该节点压入栈中,并指向该节点的左子节点
    			order_result.append(current_node.val)
    			read_tree.append(current_node)
    			current_node = current_node.left
    		#当遍历完一条路径后,将最后入栈的节点出栈,并从该节点的右子节点开始遍历
    		current_node = read_tree.pop()
    		current_node = current_node.right
    	return order_result

Leetcode二叉树的后序遍历

问题描述
给定一个二叉树,返回它的后序遍历。

示例
输入:[1,null,2,3]
输出:[3,2,1]

思考
定义一个栈,从树的根节点开始,沿着左子树开始遍历,并将遍历到的左子节点存到栈中。如果当前节点没有左子节点,就要将他的右子节点进行入栈处理,直到遍历到既没有左子节点也没有右子节点时停止。这是因为后序遍历的顺序是“左——右——根”,如果不将整条路径上的所有的节点遍历到,后续出栈存值时,就会将没有左子节点而有右子节点的节点出栈存值。

将整条路径上的节点入栈后,开始出栈存值,并将当前节点指向其根节点的右子节点,从右子树开始遍历。这样做也是为了将右子节点的值保存在根节点值之前。

具体代码如下

class Solution:
    def postorderTraversal(self, root: TreeNode) -> List[int]:
    	order_result = []
    	read_tree = []
    	current_node = root
    	while current_node != None or len(read_tree) != 0:
    		while current_node != None:
    			read_tree.append(current_node)
    			if current_node.left != None:
    				current_node = current_node.left
    			else:
    				current_node = current_node.right
    		current_node = read_tree.pop()
    		order_result.append(current_node.val)
    		if len(read_tree) != 0 and current_node == read_tree[-1].left:
    			current_node = read_tree[-1].right
    		else:
    			current_node = None
    	return order_result
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值