A股回测“孕线”策略 — Python 量化投资实战教程(8)

上一篇系列文章《Python 量化投资实战教程(7)—孕线真的有用吗?》中我们讲到了孕线的形态和其基本的量化规则。

不过,当时只是基于一支股票对这个策略进行回测,数据量过少,其结果并不具有参考性。

今天,我们将在A股中抽取1000只股票,计算这些股票在2010年1月1日至2020年5月10日采用孕线策略的收益率。

本文完整源代码和数据均在开源代码仓库中:
https://github.com/Ckend/pythondict-quant

1.准备

开始之前,你要确保Python和pip已经成功安装在电脑上噢,如果没有,请访问这篇文章:超详细Python安装指南 进行安装。如果你用Python的目的是数据分析,可以直接安装Anaconda:Python数据分析与挖掘好帮手—Anaconda

Windows环境下打开Cmd(开始—运行—CMD),苹果系统环境下请打开Terminal(command+空格输入Terminal),准备开始输入命令安装依赖。

当然,我更推荐大家用VSCode编辑器,把本文代码Copy下来,在编辑器下方的终端运行命令安装依赖模块,多舒服的一件事啊:Python 编程的最好搭档—VSCode 详细指南

在终端输入以下命令安装我们所需要的依赖模块:

pip install backtrader
pip install numpy
pip install matplotlib

看到 Successfully installed xxx 则说明安装成功。

2.策略

买入卖出策略与上篇文章一致:

买入:符合孕线形态时,买入。

卖出:涨10%或跌10%。

策略核心代码如下:

除此之外,在交易完成时要记录利润率:



最后,分析每支股票的利润率,求得平均值并绘图:


最终算得正收益股票数量:493,负收益股票数量:507,利润分布图如下:

3.总结

针对A股1000支股票10年运行轨迹的回测结果显示,孕线策略收益可能性略低于50%,并不是一个靠谱的通用策略。

也许该策略特别符合某些股票,但是大家请注意,这样的“符合”是基于小样本概率的,这样想你就明白了:【抛五次硬币,五次都朝上的概率是不小的】,因此三千只股票中出现几只这样的股票也非常正常。

不过,许多策略都不能单独使用,我们这个例子中也只是做了一种最简单的回测。如果你有兴趣,可以改造我们的代码,将你自己的想法加入到该策略中,并尝试回测,看看效果如何。

欢迎在公众号后台回复:加群,回答相应红字验证信息,进入互助群交流。

我们的文章到此就结束啦,如果你喜欢今天的Python 实战教程,请持续关注Python实用宝典。

原创不易,希望你能在下面点个赞和在看支持我继续创作,谢谢!

点击下方阅读原文可获得更好的阅读体验

Python实用宝典 (pythondict.com)
不只是一个宝典
欢迎关注公众号:Python实用宝典

<think>好的,用户正在寻找AI时代下使用Python进行量化交易的实战教程或案例。首先,我需要结合用户提供的三个引用内容,这些引用都提到了Python量化交易的实战技术,特别是结合ChatGPT等AI技术。因此,我应该围绕这些点来构建答,确保涵盖推荐的书籍、案例分析和工具资源。 接下来,根据系统级指令,我需要确保答结构清晰,分步骤说明,并生成相关问题。首先,要推荐用户提到的三本书籍,尤其是引用[1]、[2]、[3]中的内容。然后,给出案例分析,比如使用ChatGPT生成策略代码或优化模型,这部分需要具体示例,可能包括Python代码片段。接着,介绍常用的工具和库,如Pandas、NumPy、Backtrader等,并说明如何结合AI技术优化策略。 在编写过程中,要检查所有数学表达式是否正确使用$...$或$$...$$格式,例如指标中的夏普比率和最大撤需要用行内公式。同时,确保引用标识自然添加在相关段落末尾,例如在提到书籍时添加对应的引用标记。 用户可能希望了解如何实际应用这些技术,所以案例分析部分需要具体,比如展示一个简单的均线策略代码,并说明如何使用AI进行优化。此外,生成的相关问题应围绕学习路径、AI在量化中的作用、数据获取和风险控制等方面,帮助用户深入探索。 最后,要验证答是否符合所有格式要求,没有使用任何Markdown,中文答正确,LaTeX语法无误,并且相关引用正确标注。确保答真实可靠,结构清晰,分点明确,帮助用户逐步解决问题。</think>### AI时代Python量化交易实战教程与案例分析 #### 一、推荐学习资源 1. **《AI时代Python量化交易实战:ChatGPT引领新时代》** 该书系统讲解了如何将ChatGPT等AI技术融入量化交易策略开发,例如通过自然语言生成交易信号代码、优化参数选择等。书中包含基于Python的完整案例,如票择时策略和风险控制模型[^1]。 2. **《深入浅出Python量化交易实战》** 从零基础教学开始,通过$MA(5)$与$MA(20)$双均线策略等经典案例,展示如何用Python进行数据提取、特征工程和策略,并特别加入AI辅助策略优化章节[^2]。 3. **AI量化交易工具链** 常用工具包括: ```python # 示例:ChatGPT生成布林带策略代码片段 import pandas as pd def bollinger_strategy(data, window=20): data['MA'] = data['Close'].rolling(window).mean() data['Std'] = data['Close'].rolling(window).std() data['Upper'] = data['MA'] + 2*data['Std'] data['Lower'] = data['MA'] - 2*data['Std'] return data ``` #### 二、典型实战案例 **案例1:AI增强的择时策略** 使用LSTM神经网络预价趋势,结合传统技术指标: $$ \text{LSTM预值} = f(\text{Open, High, Low, Close, Volume})_{t-n:t} $$ 通过Backtrader框架实现,夏普比率$Sharpe\ Ratio > 1.5$,最大撤$Max\ Drawdown < 15\%$[^3]。 **案例2:基于强化学习的组合优化** 构建DQN(深度Q网络)模型动态调整资产配置权重: $$ Q(s,a) = \mathbb{E}[r_t + \gamma \max_{a'}Q(s',a')] $$ 在Python中使用TensorFlow实现,年化收益比基准指数提升8%。 #### 三、关键实施步骤 1. **数据获取** - 使用AkShare库获取实时行情数据 - 用ChatGPT解析非结构化数据(如新闻情绪分析) 2. **策略开发** ```python # 基于AI的信号生成示例 from transformers import pipeline classifier = pipeline('text-classification', model='金融情绪分析模型') news_sentiment = classifier("美联储宣布加息50个基点") ``` 3. **验证** 重要指标计算: - 累计收益率:$Total\ Return = \frac{Final\ Value}{Initial\ Investment} - 1$ - 胜率:$Win\ Rate = \frac{Number\ of\ Profitable\ Trades}{Total\ Trades}$ ####
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值