Solve equation

Problem A Solve equation

 Problem Description

You are given two positive integers A and B in Base C. For the equation:

A=k*B+d

We know there always existing many non-negative pairs (k, d) that satisfy the equation above. Now in this problem, we want to maximize k.

For example, A="123" and B="100", C=10. So both A and B are in Base 10. Then we have:

(1) A=0*B+123

(2) A=1*B+23

As we want to maximize k, we finally get one solution: (1, 23)

The range of C is between 2 and 16, and we use 'a', 'b', 'c', 'd', 'e', 'f' to represent 10, 11, 12, 13, 14, 15, respectively.

 Input

The first line of the input contains an integer T (T≤10), indicating the number of test cases.

Then T cases, for any case, only 3 positive integers A, B and C (2≤C≤16) in a single line. You can assume that in Base 10, both A and B is less than 2^31.

 Output

For each test case, output the solution “(k,d)” to the equation in Base 10.

 Sample Input

3

2bc 33f 16

123 100 10

1 1 2

 Sample Output

(0,700)

(1,23)

(1,0)

已知数字转换成任意进制公式    sum=sum*进制+数字

#include <iostream>
#include <cstring>
#include <cmath>
#include <stdio.h>
using namespace std;
int s1[2000];
int s2[2000];
char c1[2000];
char c2[2000];
int main ()
{

    int t,C,sum1,sum2,zhengchu,yushu,len1,len2,i;
    scanf("%d",&t);
    while(t--)
    {  sum1=sum2=0;
        cin>>c1>>c2>>C;
        len1=strlen(c1);
        len2=strlen(c2);
        for(i=0;i<len1;i++)
        {
            if(c1[i]>='a'&&c1[i]<='f')
                s1[i]=c1[i]-'a'+10;
            else
                s1[i]=c1[i]-'0';
        }
         for(i=0;i<len2;i++)
        {
            if(c2[i]>='a'&&c2[i]<='f')
                s2[i]=c2[i]-'a'+10;
            else
                s2[i]=c2[i]-'0';
        }
        for(i=0;i<len1;i++)
        {
            sum1=sum1*C+s1[i];
        }
         for(i=0;i<len2;i++)
        {
            sum2=sum2*C+s2[i];
        }
        zhengchu=sum1/sum2;
        yushu=sum1%sum2;
        cout<<'('<<zhengchu<<','<<yushu<<')'<<endl;
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值