Spark是什么?

目录

 

什么是Spark?

速度

Spark数据处理速度秒杀MapReduce

易用性

通用性

运行环境

版本


什么是Spark?

Spark官网地址:http://spark.apache.org/

Apache Spark™是一个用于大规模数据处理的统一分析引擎。

速度

Apache Spark使用最先进的DAG调度器、查询优化器和物理执行引擎,实现了批处理和流式数据的高性能。

 

Spark数据处理速度秒杀MapReduce

Spark因为其处理数据的方式不一样,会比MapReduce快上很多。MapReduce是分步对数据进行处理的: ”从集群中读取数据,进行一次处理,将结果写到集群,从集群中读取更新后的数据,进行下一次的处理,将结果写到集群,等等…“ Booz Allen Hamilton的数据科学家Kirk Borne如此解析。

反观Spark,它会在内存中以接近“实时”的时间完成所有的数据分析:“从集群中读取数据,完成所有必须的分析处理,将结果写回集群,完成,” Born说道。Spark的批处理速度比MapReduce快近10倍,内存中的数据分析速度则快近100倍。

如果需要处理的数据和结果需求大部分情况下是静态的,且你也有耐心等待批处理的完成的话,MapReduce的处理方式也是完全可以接受的。

但如果你需要对流数据进行分析,比如那些来自于工厂的传感器收集回来的数据,又或者说你的应用是需要多重数据处理的,那么你也许更应该使用Spark进行处理。

大部分机器学习算法都是需要多重数据处理的。此外,通常会用到Spark的应用场景有以下方面:实时的市场活动,在线产品推荐,网络安全分析,机器日记监控等

易用性

用Java、Scala、Python、R和SQL快速编写应用程序。

Spark提供了80多个高级算子,可以轻松构建并行应用程序。您可以从Scala、Python、R和sqlshell交互使用它。

通用性

组合SQL、流和复杂分析。

Spark为一堆库提供了动力,包括SQL和DataFrames、用于机器学习的MLlib、GraphX和Spark Streaming。您可以在同一个应用程序中无缝地组合这些库。

运行环境

Spark运行在Hadoop、Apache Mesos、Kubernetes、standalone或cloud。它可以访问不同的数据源。

您可以在EC2、Hadoop YARN、Mesos或Kubernetes上使用Spark的Standalone集群模式运行Spark。访问HDFS、ALUXIO、Apache CasdRRA、Apache HBASE、Apache Hive和其他数百个数据源的数据。

版本

http://spark.apache.org/downloads.html,Spark3.0目前还是在试验阶段,还没有投入生产使用,

期待。。。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

京河小蚁

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值