欧拉函数

欧拉函数的定义:E(k)=([1,n-1]中与n互质的整数个数).
   
     因为任意正整数都可以唯一表示成如下形式:
                     k=p1^a1*p2^a2*……*pi^ai;(即分解质因数形式)
    可以推出:E(k)=(p1-1)(p2-1)……(pi-1)*(p1^(a1-1))(p2^(a2-1))……(pi^(ai-1))
               =k*(p1-1)(p2-1)……(pi-1)/(p1*p2*……pi);
               =k*(1-1/p1)*(1-1/p2)....(1-1/pk)
     ps:在程序中利用欧拉函数如下性质,可以快速求出欧拉函数的值(a为N的质因素)
若(N%a==0 && (N/a)%a==0) 则有:E(N)=E(N/a)*a;

若(N%a==0 && (N/a)%a!=0) 则有:E(N)=E(N/a)*(a-1);

http://hi.baidu.com/ldante/blog/item/996b0ea131a7a58f46106443.html

第一次写欧拉函数的题,琢磨的半天,最后还是只能按照最开始的想法写......
欧拉函数PHI(n)表示的是比n小,并且与n互质的正整数的个数(包括1)。比如:
PHI(1) = 1; PHI(2) = 1; PHI(3) = 2; PHI(4) = 2; ... PHI(9) = 6; ...

要计算一个正整数n的欧拉函数的方法如下:
1. 将n表示成素数的乘积: n = p1 ^ k1 * p2 ^ k2 * ... * pn ^ kn(这里p1, p2, ..., pn是素数)
2. PHI(n) = (p1 ^ k1 - p1 ^ (k1 - 1)) * (p2 ^ k2 - p2 ^ (k2 - 1)) * ... *
(pn ^ kn - pn ^ (kn - 1))
              = Mult { pi ^ ki - pi ^ (ki -1) }

证明过程如下:
1. 容易想到:当n为素数时,PHI(n) = n - 1。因为每个比n小的正整数都和n互素。当n为素数p的k次方时,PHI(n) = p ^ k - p ^ (k - 1)。因为在1到n之间的正整数只有p的倍数和n不互素,这样的数有(p ^ k / p)个。
2. 如果m和n互素,即GCD(m, n) = 1,那么PHI(m * n) = PHI(m) * PHI(n)。用中国剩余定理可以证明,证明的思路是建立这样一种一一对应的关系(a, b) <-> x,其中正整数a小于m并且gcd(a, m) = 1,正整数b小于n并且gcd(b, n) = 1,正整数x小于m*n并且gcd(m*n, x) = 1。证明过程如下:
    1)根据中国剩余定理,如果m和n互素,那么关于未知量x的方程组x % m = a, x % n = b(0 <= a < m, 0 <= b < n),当0 <= x < m * n时存在并且仅存在一个解。容易证明,如果两个这样的方程组有相同的m, n但是a, b不同,那么他们的解x一定不同。
    2)首先用反正法证明:gcd(m, a) = 1且gcd(n, b) = 1是gcd(m*n, x) = 1的必要条件:假设gcd(a, m) = k > 1,由此可得:a = a' * k; m = m' * k => x = k' * m + a = k' * k * m' + k * a' = k * (k' * m' + a'); 所以gcd(x, m) = k > 1。同理可证,如果gcd(b, n) > 1, 那么gcd(x, n) > 1。所以x和m * n互素的必要条件是a和m互诉且b和n互素。
    3)接下来我们证明充分性:由x % m = a 可以得到x = k * m + a;由欧几里德算法求最大公约数的过程(就不证明了,呵呵,还得想)可以知道gcd(x, m) = gcd(m, a) = 1;同理可得,如果gcd(n, b) = 1那么gcd(x, n) = 1。接下来很容易得到:gcd(m*n, x) = 1。从而证明了充分性。
    4)上面三步的结论表明,数对(a, b)是可以和x建立起一一对应的关系的,所以有多少个不同的(a, b),就有多少个不同的x。
3.将n分解成素数乘积后,显然对于任意的i, j(i != j)都满足 pi ^ ki和pj ^ kj是互素的,于是可以的到上面的公式。

跟据上面的公式,可以得到关于欧拉函数的递推关系:
假设素数p能整除n,那么
如果p还能整除n / p, PHI(n) = PHI(n / p) * p;
如果p不能整除n / p, PHI(n) = PHI(n / p) * (p - 1);

下面是两种求欧拉函数的不同编程方法:

/*==================================================*\
|递推求欧拉函数phi(i)
\*==================================================*/
for (i = 1; i <= maxn; i++) phi[i] = i;
for (i = 2; i <= maxn; i += 2) phi[i] /= 2;
for (i = 3; i <= maxn; i += 2) if(phi[i] == i) {
for (j = i; j <= maxn; j += i)
phi[j] = phi[j] / i * (i - 1);


/*==================================================*\
|单独求欧拉函数phi(x)
\*==================================================*/
unsigned euler(unsigned x)
{// 就是公式
unsigned i, res=x;
for (i = 2; i < (int)sqrt(x * 1.0) + 1; i++)
if(x%i==0) {
res = res / i * (i - 1);
while (x % i == 0) x /= i; // 保证i一定是素数
}
if (x > 1) res = res / x * (x - 1);
return res;
}





#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
#define maxn 3000005
__int64 phi[maxn];
int main()
{
    int i,j;
    for (i = 1; i <= maxn; i++)
        phi[i] = i;
    for (i = 2; i <= maxn; i += 2)
        phi[i] /= 2;
    for (i = 3; i <= maxn; i += 2)
        if(phi[i] == i)
        {
            for (j = i; j <= maxn; j += i)
                phi[j] = phi[j] / i * (i - 1);
        }
    int a,b;
    while(scanf("%d",&b)!=EOF , b )
    {
        __int64 ans=0;
        for(i=2; i<=b; i++)
            ans+=phi[i];
        printf("%I64d\n",ans);
    }
    return 0;
}

//以下是2种求欧拉函数的算法
// 1,
void init()
{
    __int64 i,j;
    e[1] = 1;
    for(i=2; i<=N; i++)
        if( !e[i] )
        {
            for(j=i; j<=N; j+=i)
            {
                if ( !e[j] )
                    e[j] = j;
                e[j] = e[j] / i * (i-1);
            }
        }
}

//2,利用素数筛选:
void init()
{
    __int64 i, j;
    p[0] = 1; //记录素数个数
    p[1] = 2;
    for (i=3; i<N; i+=2)
    {
        if (hash[i])
            continue;
        p[++p[0]] = i;
        for (j=i*i; j<N; j+=i)
            hash[j] = true;
    } //筛素数
    e[1] = 1;
    for (i=1; i<=p[0]; i++)
        e[p[i]] = p[i] - 1; //初始化素数的phi
    for (i=2; i<N; i++)
    {
        if(!e[i])
        {
            for (j=1; j<=p[0]; j++)
                if (i % p[j]==0)
                {
                    if (i / p[j] % p[j])
                        e[i] = e[i / p[j]] * e[p[j]];
                    else
                        e[i] = e[i / p[j] ]* p[j];
                    break;
                } // 利用上述性质求解
        }
    }
    return ;
}
//2,筛选法(求某一个数的):
int euler(int x)
{
    memset(a,0,sizeof(a));
    int i,j;
    for(i=2; i<=x; i++)
    {
        if(!a[i]&&x%i==0)//重点
        {
            for(j=i; j<x; j=j+i)
                a[j]=1;
        }
    }
    int s=0;
    for(i=1; i<x; i++)
        if(!a[i]) s++;
    return s;
}

//明显第一种的编程复杂度要低很多
//所以,一般情况下(N不是很大),采用第一种即可;
//贴在这里供以后复习


  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值