Many properties of the natural numbers can be derived from the five Peano axioms:
- 0 is a natural number.
- Every natural number has a successor.
- 0 is not the successor of any natural number.
- If the successor of {\displaystyle x}
equals the successor of {\displaystyle y}
, then {\displaystyle x}
equals {\displaystyle y}
.
- The axiom of induction: If a statement is true of 0, and if the truth of that statement for a number implies its truth for the successor of that number, then the statement is true for every natural number.
Some forms of the Peano axioms have 1 in place of 0. In ordinary arithmetic, the successor of {\displaystyle x} is {\displaystyle x+1}
.
自然数的许多性质可以从Peano公理得出:
- 0是一个自然数。
- 每个自然数都有一个继任者。
- 0不是任何自然数的继承者。
- 如果继任者 {\ displaystyle x}
等于。的继承者 {\ displaystyle y}
, 然后 {\ displaystyle x}
等于 {\ displaystyle y}
。
- 该感应的公理:如果语句为0真的,如果一个数字,说的是事实意味着它的道理的,这个数字的继任者,那么该语句是每一个自然数如此。
Peano公理的某些形式有1代替0.在普通算术中,{\ displaystyle x} 是 {\ displaystyle x + 1}
。