*皮亚诺关于公理4的一段语录解析 皮亚诺读后之六

皮亚诺关于公理4的一段语录解析 皮亚诺读后之六

科学院在增补院士,如今的科学研究似乎与权势和利益总脱不开干系。仿佛就没有不为利益而进行的研究,也没有超脱权势不受权势影响的科学。有这样一个几乎成为常识的观念,任何人成为院士,自然都有可能。不过,继续皮亚诺那套东西时,我突然想到很早看过的一篇数学随笔:应用数学是坏数学。重又翻翻,发现作者似乎给纯粹数学家一点鼓舞,他们把自己的专业看作是艺术,最高的赞扬是漂亮,不在乎利益,也不在乎权势。而谈到应用数学家时,作者认为,他们最好的赞赏则是“强有力”,最在乎的自然是得到应用。这个上世纪80年代的说法,还真有点意思。(参见北京大学出版社《数学与文化》第156页)
皮亚诺的东西显然要放在纯粹数学的范围之内,冲着一份对艺术的憧憬,不在乎那东西是“有用”还是“强有力”,牛年后的算术理论阅读,就接续年前的,继续皮亚诺算术那剩下的公理吧。
算术图片
在这里插入图片描述

标题一、皮亚诺公理4和他关于公理4的一段摘录

先列出这个公理4的表达式,使用皮亚诺的表达方式,这个公理4表示如下:

PA4 (a∈N) 推出((~(a’=1))

或者用更容易理解的公式表述:(a∈N) 推出 (a’≠1)

用自然语言来表述,可以简单表述为:

数字1不是任何自然数的后继。

由三个基本概念自然数系列N,后继’,和基元素1,再加上前三个公理,可以生成自然数系列,应该可以开始引出算术的基本运算了。那么,为什么还需要公理4和公理5呢?我们先来理解这个公理4存在的必要性。
皮亚诺1889年给出他的算术公理化系统,1891年他为这几个公理的产生,又发表过一篇论文《sul concetto di numero》,大体相当于对他的算术系统做元数学考察的文章。在论述到公理4的时候,他有这么一段话。

为了搞清楚这个公理4甚至不是公理1,2,3,和5的后承,让我们来考虑一下以下等式的根,即等式xn = 1的根;让我们把这个首根(first root),或者1的根称之为有最小参变量(2π/n)的一个虚拟根;再让我们把一个根a的后继称作为把首根与a相乘的乘积;条件(公理)1,2,3,5被验证了,但是那个公理4并没有得到验证,那个首根也是第n个后继。同样的实例也可以用名为“小时”hours的普通形式来给出;时钟上的一点钟是12点钟的后继。
(转摘自Gillies《弗雷格 戴德金 皮亚诺论算术基础》第70页)

这段摘录是理解公理4的经典描述,值得多加琢磨。
为什么需要这个公理4?皮亚诺用那个等式的实例简要说明了,除了公理4之外的其它公理都在这个例证中得到验证,
皮亚诺先指出,这个公理4是独立的,它从其它公理导不出来。为什么导不出来呢?后面的论述都是在说明这种独立性。不过,这个独立性的论述,在我看来,与其说是在讨论独立性,不如说是在论证,这个公理4对于它的公理化算术系统的必要性。
这个导不出应该比较直观。
公理1说,1是自然数,还没有提到后继,所以一点导出公理4的意味都没有。
公理2说,任何数的后继是自然数。提到后继了,却也与公理4无关,公理4否认1是一个后继,自然不能由公理2导出。
公理3说,两个自然数相等,其后继也相等。更与公理4无关,它没有涉及到两个自然数和两个后继之间的关系。
最后公理5,数学归纳法,也是无关,我们在下篇再议。

标题二、防止后继重复的公理4

然后,皮亚诺用实例来表明,公理4对于这个算术系统是必要的。反复琢磨皮亚诺短短的几个实例,很难说就理解了皮亚诺的文意。我不揣浅陋,把我的理解略述如下。
皮亚诺举出的实例后面的参量应该是一个属于三角函数的例子,涉及到弧度与弧长概念。半圆长度为一个π,弧度为180度,2π就是整个园,自然对应360度。两条半径形成的角度,对应圆周上的一个弧。那个2π/n的参变量称之为最小smallest,当n作为自然数时,取360当是2π/n最小,其值为1。
欧拉发现弧度概念
在这里插入图片描述

我做了两个表格,一个角度弧度的换算,一个是2π/n中的n取值结果。
角度与弧度换算表
角度 0° 30° 45° 60° 90° 120° 135° 150° 180° 270° 360°
弧度 0 π/6 π/4 π/3 π/2 2π/3 3π/4 5π/6 π 3π/2 2π

2π/n取值结果:当2π/n为最小值1的时侯,n为360,角度也是360
2π/n 1 2 3 4 5 6 7 8 9 10 … 360
n值 360 180 120 90 72 60 约51 45 40 36 … 1
角度 360° 180° 120° 90° 72° 60° 360° 45° 40° 36° … 360°
弧度 2π π 2π/3 π/2 2π/5 π/3 2π/7 π/4 2π/9 π/2 … 2π

在这里插入图片描述

但因为我们的算术系统,数字之间的大小还没有定义,我们实际上还不知道何为大,何为小。所以,皮亚诺使用了一个假想的根,这个根的性质自然也是假想的,称作最小的参量。从上表可知,如果我们在2π/n中为n赋值的时候,这个赋值的第一值,也就是那个假想的最小参数1,对应了弧度中的最大值360°。这个赋值的过程按照自然数顺序递减,转到360的时候,结果则反过来了。
这告诉我们什么呢?很明显是告诉读者,如果我们没有一个公理来堵住这个循环,仅仅后继概念,那是会导致后继的重复的。这个角度弧度的后继赋值结果从1走到360以后,还可以继续前行,由此我们很可能就会有重复的后继。就像皮亚诺所言:那个第一根first root还会成为后来的第n个后继。要保证自然数不会走向循环重复之途,非得有公理4不可。
方程xn = 1的x,首根自然是1。首根与a的乘积,看作是根a的后继a’。那么,这个a’是个什么对象呢?用皮亚诺的话回答,这个首根在没有公理4的情况下,很有可能成为第n个后继。这真如同皮亚诺所举钟表的例子,小时这个系列,在12进制的钟表中,一点钟成为12点钟的后继。

标题三、公理4表明自然数的无穷

皮亚诺的这个公理4,其实在戴德金那里已经出现。戴德金论述自然数成立的条件,其中的条件3,元素1不包含在自然数的后继之中。这个条件3,几乎完全等同于皮亚诺的公理4。
无论是戴德金的条件3还是皮亚诺的公理4,除了堵住了后继的循环重复之外,一个十分自然的导出就是自然数的无限延伸特性。既然自然数的后继不允许重复,而且自然数都有后继可续,那么这就保证了,无论有多少自然数,我们总可以产生新的自然数。于是,一个有端口,无止境的自然数无限系列就成了当然。
自然数无限系列的存在,借助皮亚诺公理的1-4,似乎已经可以建立起来了。但为什么还需要皮亚诺的公理5,大约也是戴德金所说的完全归纳法定理80呢?这留给最后一篇读皮亚诺的博文吧。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
绘制Peano曲线和Koch曲线可以使用MATLAB中的绘图函数进行实现,下面是详细的代码实现: 1. 绘制Peano曲线 ```matlab % 定义绘制Peano曲线的函数 function PeanoCurve(n) % n为绘制的阶数 if n == 0 x = [0 1 1 2 2 3 3 2 2 1 1 0]; y = [0 0 1 1 0 0 1 1 2 2 1 1]; plot(x,y,'k'); else hold on; PeanoCurve(n-1); % 递归绘制子曲线 axis equal; % 设置坐标轴比例相等 x = get(gca,'Xtick'); y = get(gca,'Ytick'); set(gca,'XTick',[],'YTick',[]); % 隐藏坐标轴 x = [x(1) x x(end)]; y = [y(1) y y(end)]; % 添加边框 x1 = x(1:2:end); x2 = x(2:2:end); y1 = y(1:2:end); y2 = y(2:2:end); x = [x1;x2;x2;x1;x1]; y = [y1;y1;y2;y2;y1]; % 组合子曲线 plot(x,y,'k'); hold off; end end ``` 使用方法: ```matlab PeanoCurve(3); % 绘制3阶Peano曲线 ``` 2. 绘制Koch曲线 ```matlab % 定义绘制Koch曲线的函数 function KochCurve(n) % n为绘制的阶数 if n == 0 x = [0 1 1/2 1/2 1 1]; y = [0 0 sqrt(3)/2 sqrt(3) sqrt(3) 0]; plot(x,y,'k'); else hold on; KochCurve(n-1); % 递归绘制子曲线 axis equal; % 设置坐标轴比例相等 x = get(gca,'Xtick'); y = get(gca,'Ytick'); set(gca,'XTick',[],'YTick',[]); % 隐藏坐标轴 x = [x(1) x x(end)]; y = [y(1) y y(end)]; % 添加边框 x1 = x(1:2:end); x2 = x(2:2:end); y1 = y(1:2:end); y2 = y(2:2:end); x = [x1;(x1+x2)/2;(x1+x2)/2;(x2-x1)/2+x1;x2]; y = [y1;(y1+y2)/2;(y1+y2)/2;(y2-y1)/2+y1;y2]; % 组合子曲线 plot(x,y,'k'); hold off; end end ``` 使用方法: ```matlab KochCurve(3); % 绘制3阶Koch曲线 ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值