皮亚诺算术体系 【第一章 自然数串】(数理哲学导论)

最近在阅读罗素大神的数理哲学导论,本书是罗素继1903年问世的《数学原则》和1910-1913年出版的三大卷黄黄巨著《数学原理》之后所写的一本书,本来是想直接开肝数学原理的,但是数学原理一书因为内容艰深晦涩,国内似乎并没有中文版的,但是在网上看到了这本书,这本书罗素在谈到时,把它称之为数学原理一书的导论,或者半普及本,这本较之于数学原理更容易上手,于是趁着有空,打算看完这本书。

我们对于自然数虽是熟悉,却并没有了解。什么是“数”,什么是"0",什么是"1",很少有人严格解释过,更不用下定义,Peano在1889年,在数学家戴德金工作的基础上,皮亚诺在《用一种新方法陈述的算术原理》一书中提出了一个算术公理系统。

一、定义

一个戴德金-皮亚诺结构为一满足下列条件的三元组(Xxf):

Ⅰ、X是一集合,xX中一元素,fX到自身的映射;

Ⅱ、x不在f的像集内;

Ⅲ、f为一单射。

Ⅳ、若AX的子集并满足x属于A,且若a属于A, 则f(a)亦属于A,则A=X

二、加法的定义

我们定义,加法是满足以下两种规则的运算:

Ⅰ、∀mN,0 +m =m

Ⅱ、∀mnNn' +m = (n +m)'。

有了这两条仅依赖于“后继”关系的加法定义,任意两个自然数相加的结果都能确定出来了。

加法性质:

1+1=2

1 + 1
  = 0’ + 1 (根据自然数的公理)
  = (0 + 1)’(根据加法定义Ⅱ)
  = 1’ (根据加法定义Ⅰ)
  = 2 (根据自然数的公理)

结合律

证明对任意的a,下述命题成立:

b,c,(a+b)+c=a+(b+c)。

a=0时,

(0+b)+c=b+c(加法定义Ⅰ)

=0+(b+c)(加法定义Ⅰ),命题成立。

假设命题对a成立,则对a':

任给b,c,有(a'+b)+c=(a+b)'+c=((a+b)+c)'=(a+(b+c))'=a'+(b+c),命题也成立。

由公理Ⅴ,命题成立。由此即得结合律a+(b+c)=(a+b)+c

m'=1+m

= 0 时,1+m=1+0=0'+0=(0+0)'=0',命题成立。由公理Ⅴ,即知命题对m的其他自然数取值也成立。

m'=m+1

m= 0 时,对于m',m'=0'=1=0+1=m+1,命题成立。对(m‘)',(m’)'=(m+1)'=m'+1,命题也成立。由公理Ⅴ,即知命题对m的其他自然数取值也成立。

m+0=m

(1)当m=0 时,m+0=0+0=0,m=0,于是m+0=m成立,即m+0=m在m=0时成立;

(2)假设m+0=m在m=k时成立,即k+0=k,那么当m=k'时,m+0=k'+0=(k+0)'=k',m=k',于是m+0=m成立,即m+0=m在m=k'时成立。由此,如果m+0=m在m=k时成立,那么m+0=m在m=k'时成立;

由(1)(2)得,m+0=m恒成立。

由公理Ⅴ,即知m+0=m对于m的其他自然数取值也成立。

交换律

现证对任意的自然数n,下述命题为真:

∀自然数m,n+m=m+n

当n=0时,对于n,n+m=0+m=m=m+0=m+n,对于n',n'+m=(n+m)'=(m+n)'=m'+n=m+1+n=m+0'+n=m+(0+n)'=m+n',交换律成立。

由公理Ⅴ,即知交换律对于n的其他自然数取值也成立。

 

乘法的定义

乘法是满足以下两种规则的运算:

Ⅰ∀自然数mm · 0 = 0 ;

Ⅱ∀自然数mnm · n' = m ·n +m 。

有了这两条仅依赖于“后继”关系的乘法定义,任意两个自然数相乘的结果都能确定出来了。

乘法分配律

m·(n+k)=m·n+m·k

证明:

n=0时, m·(0+k)=m·k =0+m·k=m·0+m·k

因此乘法分配律对n=0成立。

假设结论对n成立, 下证结论对n'成立。

m·(n'+k)=m·(n+k)' (加法定义)

=m·(n+k)+m (乘法定义)

=(m·n+m·k)+m (归纳假设)

=m·n+(m·k+m)=m·n+(m+m·k)=(m·n+m)+m·k(加法结合律、交换律)

=m·n'+m·k (乘法定义), 因此结论对n'也成立, 由数学归纳原理知, 乘法分配律成立。

乘法结合律

(m·nk=m·(n·k)。

k=0时,(m·n)·0=0 (乘法定义)

m·(n·0)=m·0=0 (乘法定义)。

假设结论对k成立, 即(m·nk=m·(n·k)。 下证结论对k'成立。

(m·nk'=(m·nk+m·n (乘法定义)

m·(n·k')=m·(n·k+n) (乘法定义)

=m·(n·k)+m·n (乘法分配律)

=(m·nk+m·n (归纳假设), 因此结论对k'也成立, 由数学归纳原理知, 乘法结合律成立。

0·n=0

当 n=0时,由乘法定义0·0=0, 结论成立。

假设结论对n成立, 即0·n=0。 下证结论对n'成立。

n'=0·n+0 (乘法定义)

=0+0 (归纳假设)

=0 (加法定义)

因此, 0·n'=0, 结论对n'也成立, 由数学归纳原理知,结论成立。

n'·m=n·m+m

m=0时, 由于n'·0=0(乘法定义)

n·0+0=0+0 (乘法定义)

=0 (加法定义), 因此n'·0=n·0+0, 结论成立。

假设结论对m成立, 即nm=n·m+m. 下证结论对m'成立。

nm'=nm+n' (乘法定义)

=(n·m+m)+n' (归纳假设)

=(n·m+m)+(n+1) (后继运算)

=(n·m+n)+(m+1) (加法运算的性质)

=n·m'+m' (乘法定义和后继运算)

因此结论对m'也成立, 由数学归纳原理结论成立。

乘法交换律

m·n=n·m

当m=0时, 0·n=0=n·0, 结论成立。

假设结论对m成立, 即m·n=n·m. 下证结论对m'成立。

n·m'=n·m+n (乘法定义)

=m·n+n (归纳假设)

=mn(前文结论)

因此结论对m'也成立, 由数学归纳原理乘法交换律成立。

减法和除法

定义整数为自然数对(a,b);定义:如果a+d=b+c,则(a,b)=(c,d);定义整数加法为(a,b)+(c,d)=(a+c,b+d);定义(a,b)的相反数为(b,a)。将(a,0)和a等同。则可以证明自然数是整数的一部分,加法的定义是相符的。这样,在整数上,我们有相反数的概念。整数和它相反数的和是0,0和任意整数的和是其自身。在整数上,定义a-ba+(-b)。可以验证,这样的定义与通常理解的整数加减法是一致的。

进一步定义有理数为整数对[a,b],其中b非零。定义[a,b]=[c,d]如果ad=bc。定义有理数乘法为[a,b][c,d]=[ac,bd],定义[a,b]的倒数为[b,a],如果a,b非零。定义有理数加法为[a,b]+[c,d]=[ad+bc,bd],定义[a,b]的相反数为[-a,b],定义a-ba+(-b)。将[a,1]和a等同,则可以证明整数是有理数的一部分,加法减法乘法的定义是相符的。这样,在非零有理数上,我们有倒数的概念。非零有理数和它倒数的积是1,1和任意有理数的积是其自身。在有理数上,定义a/ba(1/b),如果b非零。可以验证,这样的定义与通常理解的有理数加减乘除法是一致的。

 

参考:

1.数理哲学引论 P9 第一章自然数串

2.百度百科:https://baike.baidu.com/item/%E7%9A%AE%E4%BA%9A%E8%AF%BA%E5%85%AC%E7%90%86/6218666?fr=aladdin

 

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值