余弦距离与余弦相似度的区别以及应用

1、定义
在这里插入图片描述
在这里插入图片描述
以上均来自维基百科(https://en.wikipedia.org/wiki/Cosine_similarity)

简单来说,余弦相似度,就是计算两个向量间的夹角的余弦值。余弦距离就是用1减去这个获得的余弦相似度。

2、性质
根据数学上的定义,在一个集合中,如果一对元素均可确定一个实数,使得三条距离公式(非负性,对称性,三角不等式)成立,则该实数可称为这对元素之间的距离。
a、非负性
由上面的余弦距离可以知道,余弦距离的取值范围为[0,2] ,这就满足了非负性的性质。
b、对称性
在这里插入图片描述
由于dist(A,B)=dist(B,A),因此满足对称性。
c、三角不等式
在这里插入图片描述
以上来自于(https://blog.csdn.net/Gary___/article/details/82938020)

3、SKlearn中比较(sklearn cosine_similarity vs pairwise_distances)

>>> from sklearn.metrics.pairwise import cosine_similarity
>>> from sklearn.metrics.pairwise import pairwise_distances
>>> a=[[1,3],[2,2]]
>>> cosine_similarity(a)
array([[ 1.        ,  0.89442719],
       [ 0.89442719,  1.        ]])
>>> pairwise_distances(a,metric="cosine")
array([[ 0.        ,  0.10557281],
       [ 0.10557281,  0.        ]])
>>> 

因此,Cosine distance 等于 1.0 减 cosine similarity.
以上来自于(https://www.jianshu.com/p/06eaeb39738d)

4、总结
在日常使用中需要注意区分,虽然不是一个严格意义上的距离度量公式,但是形容两个特征向量之间的关系还是有很大用处的。比如人脸识别,推荐系统(http://python.jobbole.com/85516/)之类,都可以用到余弦相似度以及余弦距离。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值