从线性到非线性模型-线性回归,岭回归,Lasso回归,局部加权线性回

本文探讨了从线性回归到非线性模型的过渡,包括线性回归、岭回归、Lasso回归和局部加权线性回归。线性回归通过最小化平方误差来拟合数据,而岭回归和Lasso回归通过引入正则项防止过拟合。局部加权线性回归利用加权机制实现局部分段拟合,以提高模型表现。
摘要由CSDN通过智能技术生成

从线性到非线性模型

1、线性回归,岭回归,Lasso回归,局部加权线性回归
2、logistic回归,softmax回归,最大熵模型
3、广义线性模型
4、Fisher线性判别和线性感知机
5、三层神经网络
6、支持向量机

code: https://github.com/myazi/myLearn

一、线性回归

一、线性回归

假设有数据有 T = { ( x ( 1 ) , y ( 1 ) ) , . . . , ( x ( i ) , y ( i ) ) , . . . , ( x ( m ) , y ( m ) ) } T=\left \{ \left ( x^{(1)},y^{(1)} \right ) ,...,\left ( x^{(i)},y^{(i)} \right ) ,..., \left ( x^{(m)},y^{(m)} \right ) \right \} T={ (x(1),y(1)),...,(x(i),y(i)),...,(x(m),y(m))}其中 x ( i ) = { x 1 ( i ) , . . , x j ( i ) , . . . , x n ( i ) } x^{(i)}=\left \{ x_{1}^{(i)},..,x_{j}^{(i)},...,x_{n}^{(i)} \right \} x(i)={ x1(i),..,xj(i),...,xn(i)}, y i ∈ R y^{i}\in \mathbf{R} yiR。其中m为训练集样本数,n为样本维度,y是样本的真实值。线性回归采用一个高维的线性函数来尽可能的拟合所有的数据点,最简单的想法就是最小化函数值与真实值误差的平方(概率解释-高斯分布加最大似然估计)。即有如下目标函数:
J ( θ ) = 1 2 ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 min ⁡ θ J ( θ ) J\left ( \theta \right )=\frac{1}{2}\sum_{i=1}^{m}\left ( h_{\theta }\left ( x^{(i)} \right )-y^{(i)} \right )^{2}\\ \min_{\theta }J\left ( \theta \right ) J(θ)=21i=1m(hθ(x(i))y(i))2θminJ(θ)
其中线性函数如下:

h θ ( x ( i ) ) = θ 0 + θ 1 x 1 ( i ) + θ 2 x 2 ( i ) + . . + θ n x n ( i ) = ∑ j = 1 n θ j x j ( i ) = θ T x ( i ) h_{\theta }\left ( x^{(i)}\right )=\theta _{0} + \theta _{1}x_{1}^{\left (i \right )}+ \theta _{2}x_{2}^{\left (i \right )}+..+ \theta _{n}x_{n}^{\left (i \right )}\\ =\sum_{j=1}^{n}\theta _{j}x_{j}^{\left (i \right )}\\ =\mathbf{\theta}^{T} \mathbf{x}^{(i)} hθ(x(i))=θ0+θ1x1(i)+θ2x2(i)+..+

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值