1.3 线性回归-Lasso回归

本文介绍了一个使用Python的Scikit-learn库实现Lasso回归的实际案例。通过加载糖尿病数据集并进行训练测试集划分,展示了如何调整参数以实现Lasso回归模型,并评估了模型的系数、截距、残差平方和及得分。
摘要由CSDN通过智能技术生成

线性回归-Lasso回归

# -*- coding: utf-8 -*-
"""
auhtor:Marco
algorithm name :Lasso Regression
"""
print (__doc__)
import  numpy as np
from sklearn import cross_validation,linear_model,datasets

def load_data():
    diabets = datasets.load_diabetes()
    return  cross_validation.train_test_split(diabets.data,diabets.target,train_size=0.75,random_state=0)

def test_Lasso(*data):
    X_train,X_test,y_train,y_test = data
    regr = linear_model.Ridge(alpha=0.01)     #参数调整的位置
    regr.fit(X_train,y_train)
    print('Coefficient %s,intercept %2.f' %(regr.coef_,regr.intercept_))
    print('Residual sum of squares: %2.f' % np.mean((regr.predict(X_test)-y_test)**2))
    print ('Score %2.f' % regr.score(X_test,y_test))

if __name__ =="__main__":
    X_train, X_test, y_train, y_test = load_data()
    test_Lasso(X_train,X_test,y_train,y_test)



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值