最难的是数据采集和清洗环节,可通过大模型打通,可参考之前的分析。
引言
在现代企业的招投标活动中,合理预测投标价格是提升中标概率的重要手段。通过采集并分析招投标信息,利用机器学习模型进行费用评估与价格预测,可以为企业提供有力的决策支持。本文提出一种基于数据驱动的投标价格预测方法,包含信息采集、分类整理、模型训练及预测验证四个阶段,并结合假设检验进行效果评估。
第一部分:信息采集与分类整理
信息采集内容
项目相关信息
1.项目名称:明确招标的具体领域与需求。
2.所属行业:分类整理,便于后续模型分析。
3.预算项目建设金额:招标方预期的项目支出范围。
4.建设内容:包括项目的具体参数、技术要求等细节。
中标结果信息
1.中标金额:最终的中标价格,用于模型训练。
2.中标公司:提供行业竞争情况和市场定价参考。
信息分类与清洗
数据分类
根据所属行业细分,例如建筑工程、信息化项目、制造业设备采购等。
数据清洗
去重:去除重复记录
缺失值处理:对预算金额或中标金额缺失的数据进行合理填补或剔除
异常值检测:过滤远离行业平均值的异常数据,防止模型偏差
第二部分:模型设计与训练
模型一:预算金额费用评估预测
目标:预测某一建设内容的合理预算范围,为制定投标方案提供参考。
输入特征
行业类别
项目性质
所属区域
建设内容参数(规模、技术指标等,此处可通过聚类算法对文本进行分析)
输出目标
预算项目建设金额的预测值。
模型选择
使用回归模型(如 XGBoost或随机森林回归)对预算金额进行预测。
模型二:中标金额预测
目标:预测特定中标公司与建设内容对应的中标金额,结合市场竞争情况优化投标价格。
输入特征
中标公司历史中标数据
建设内容参数
预算金额
输出目标
中标金额预测值
模型选择
使用多任务学习模型(如神经网络)将中标公司与建设内容的关联信息融入预测。
数据分割与模型评估
将数据分为训练集(80%)与测试集(20%)。
使用均方误差(MSE)、平均绝对百分比误差(MAPE)等指标评估模型性能。
第三部分:结合模型的投标价格预测
双模型结合策略
1.预算金额预测:提供项目合理的费用范围,定义出一个价格上下限。
2.中标金额预测:结合竞争公司与建设内容,确定目标价格的竞争性与可行性。
3.融合预测结果:如果预算金额为 B,中标金额预测为 P,可以定义最终投标价格 T 为:T=αB+(1−α)P
其中α表示预算与市场价格的重要性权重,可通过历史数据调整。
假设检验验证
·目的:验证结合模型预测价格是否显著优于单一模型预测。
·检验方法
定义假设:
H0:双模型预测误差与单模型无显著差异;
H1:双模型预测误差显著小于单模型。
采用双样本 t 检验比较预测误差的均值差异,计算 p 值:
p≤0.05⟹拒绝H0,双模型优于单模型。
优化方向
1.数据更新:定期采集最新的招投标信息,确保模型预测的时效性与准确性。
2.模型迭代:结合行业特性引入新的特征(如政策影响、季节性因素)。
3.多维度分析:通过聚类分析挖掘不同行业与区域的投标规律。
附注
本文方法仅限于技术探讨,数据采集须严格遵守相关法律法规,不得侵犯任何组织或个人的隐私与权益。