数据分析——基于企业侧招投标信息的投标价格预测方法

最难的是数据采集和清洗环节,可通过大模型打通,可参考之前的分析。

图片

引言
在现代企业的招投标活动中,合理预测投标价格是提升中标概率的重要手段。通过采集并分析招投标信息,利用机器学习模型进行费用评估与价格预测,可以为企业提供有力的决策支持。本文提出一种基于数据驱动的投标价格预测方法,包含信息采集、分类整理、模型训练及预测验证四个阶段,并结合假设检验进行效果评估。

第一部分:信息采集与分类整理

信息采集内容

    项目相关信息

    1.项目名称:明确招标的具体领域与需求。

        2.所属行业:分类整理,便于后续模型分析。

        3.预算项目建设金额:招标方预期的项目支出范围。

        4.建设内容:包括项目的具体参数、技术要求等细节。

中标结果信息

1.中标金额:最终的中标价格,用于模型训练。

2.中标公司:提供行业竞争情况和市场定价参考。

信息分类与清洗

  数据分类

   根据所属行业细分,例如建筑工程、信息化项目、制造业设备采购等。

    数据清洗

    去重:去除重复记录

    缺失值处理:对预算金额或中标金额缺失的数据进行合理填补或剔除

    异常值检测:过滤远离行业平均值的异常数据,防止模型偏差

第二部分:模型设计与训练

模型一:预算金额费用评估预测
目标:预测某一建设内容的合理预算范围,为制定投标方案提供参考。

输入特征

行业类别

项目性质

所属区域

建设内容参数(规模、技术指标等,此处可通过聚类算法对文本进行分析)

输出目标

预算项目建设金额的预测值。

模型选择

使用回归模型(如 XGBoost或随机森林回归)对预算金额进行预测。

模型二:中标金额预测
目标预测特定中标公司与建设内容对应的中标金额,结合市场竞争情况优化投标价格。

输入特征

中标公司历史中标数据

建设内容参数

预算金额

输出目标

中标金额预测值

模型选择

使用多任务学习模型(如神经网络)将中标公司与建设内容的关联信息融入预测。

数据分割与模型评估

将数据分为训练集(80%)与测试集(20%)。

使用均方误差(MSE)、平均绝对百分比误差(MAPE)等指标评估模型性能。

第三部分:结合模型的投标价格预测

双模型结合策略

1.预算金额预测:提供项目合理的费用范围,定义出一个价格上下限。

2.中标金额预测:结合竞争公司与建设内容,确定目标价格的竞争性与可行性。

3.融合预测结果如果预算金额为 B,中标金额预测为 P,可以定义最终投标价格 T 为:T=αB+(1−α)P

其中α表示预算与市场价格的重要性权重,可通过历史数据调整。

假设检验验证

·目的验证结合模型预测价格是否显著优于单一模型预测。

·检验方法

定义假设
H0:双模型预测误差与单模型无显著差异;
H1:双模型预测误差显著小于单模型。

采用双样本 t 检验比较预测误差的均值差异,计算 p 值:

p≤0.05⟹拒绝H0,双模型优于单模型。

优化方向

 1.数据更新:定期采集最新的招投标信息,确保模型预测的时效性与准确性。

  2.模型迭代:结合行业特性引入新的特征(如政策影响、季节性因素)。

  3.多维度分析:通过聚类分析挖掘不同行业与区域的投标规律。

附注
本文方法仅限于技术探讨,数据采集须严格遵守相关法律法规,不得侵犯任何组织或个人的隐私与权益。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值