1.想起曾经的一道笔试题,现有甲,乙两个箱子,甲箱中有70个红球,30个白球;乙箱中有40个红球,60个白球。选取甲乙两箱的几率相等都为50%。
1.求随机选取一球为红球的概率。
2.若选取的为红球,求来自甲乙两箱的概率。
解:
1.这是用的贝叶斯的先验定律,通俗来说,就是知道由条件求结果,顺序求解,分别求甲乙两箱的红球概率最后相加。
A:甲箱
a:乙箱
B:红球
p(B)=p(B|A)*p(A)+p(B|a)*p(a)=0.7*0.5+0.4*0.5=55%
2.这就要用后验定律,通俗来说,由结果求可能的原因,逆向求解:
正常先贝叶斯公式推导:p(A|B)=p(AB)/p(B)
p(B|A)=p(AB)/p(A)
p(A|B)*p(B)=p(B|A)*p(A)=p(AB)
p(A|B)=p(B|A)*p(A)/p(B)
同样假设:A:甲箱 a:乙箱 B:红球
p(A|B)=p(B|A)*p(A)/p(B)
p(B)由第一问求得:p(B)=p(B|A)*p(A)+p(B|a)*p(a)=55%
来自甲箱的概率为:
p(A|B)=p(B|A)*p(A)/(p(B|A)*p(A)+p(B|a)*p(a))=0.7*0.5/0.55=7/11
来自乙箱的概率为:
p(a|B)=p(B|a)*p(a)/(p(B|a)*p(a)+p(B|A)*p(A))=0.4*0.5/0.55=4/11
2. 办公室新来了一个雇员小王,小王是好人还是坏人大家都在猜测。按人们主观意识,一个人是好人或坏人的概率均为0.5。坏人总是要做坏事,好人总是做好事,偶尔也会做一件坏事,一般好人做好事的概率为0.9,坏人做好事的概率为0.2,一天,小王做了一件好事,小王是好人的概率有多大,你现在把小王判为何种人。
解:A:小王是个好人
a:小王做好事
B:小王是个坏人
b:小王做坏事
0.82>0.18 所以小王是个好人、