#1245 : 王胖浩与三角形
时间限制:
1000ms
单点时限:
1000ms
内存限制:
256MB
-
1 2 3 3 3
样例输出
-
5.8216152143
描述
王胖浩有一个三角形,三边长为a,b,c。他有特殊的能力,能增加三条边的边长,增加的总长度不能超过l。
他想通过合理地使用他的特殊能力,使得三角形的面积最大。
输入
第一行一个整数T,表示测试数据个数。
以下T行,每行一个四个整数a,b,c,l。
数据范围:
1<=T<=104, 1<=a,b,c<=106, 0<=l<=106
输出
输出T行,每行一个实数,表示三角形的面积。要求相对误差不能超过10-9。
考虑面积公式sqrt((a+b+c)(a+b-c)(b+c-a)(a+c-b))/4,如果固定了a和b+c,那么b和c越接近越好。
所以将三条边排序,首先增加第一条边到和第二条边一样长,然后一起增加前两条边到和第三条边一样长,然后三条边一起增加。
代码:
#include <iostream>
#include <algorithm>
#include <cmath>
#include <vector>
#include <string>
#include <cstring>
#pragma warning(disable:4996)
using namespace std;
double a[5], res, ll;
int main()
{
//freopen("i.txt","r",stdin);
//freopen("o.txt","w",stdout);
int test;
scanf("%d", &test);
while (test--)
{
cin >> a[0] >> a[1] >> a[2] >> ll;
sort(a, a + 3);
if (ll <= a[1] - a[0])
{
a[0] = a[0] + ll;
}
else
{
ll = ll - (a[1] - a[0]);
a[0] = a[1];
if (ll/2 <= a[2] - a[1])
{
a[1] = a[1] + ll / 2;
a[0] = a[0] + ll / 2;
}
else
{
ll = ll - 2 * (a[2] - a[1]);
a[1] = a[2];
a[0] = a[2];
a[0] = a[0] + ll / 3;
a[1] = a[1] + ll / 3;
a[2] = a[2] + ll / 3;
}
}
res = sqrt((a[0] + a[1] + a[2])*(a[0] + a[1] - a[2])*(a[1] + a[2] - a[0])*(a[0] + a[2] - a[1])) / 4;
printf("%.10lf\n", res);
}
//system("pause");
return 0;
}