Clarke and digits
克拉克是一名人格分裂患者。某一天,克拉克变成了一个研究人员,在研究数字。 他想知道在所有长度在[l,r]之间的能被7整除且相邻数位之和不为k的正整数有多少个。
第一行一个整数T(1≤T≤5),表示数据的组数。 每组数据只有一行三个整数l,r,k(1≤l≤r≤109,0≤k≤18)。
每组数据输出一行一个数,表示答案。由于答案太大,你只需对109+7取模即可。
2 1 2 5 2 3 5
13 125
第一个样例有13个数满足,分别是:7,21,28,35,42,49,56,63,70,77,84,91,98
这个题目看着题解想了一天,收获特别多多多多。
一开始刚看这个题目的时候想法是dp, dp[i][j][k]表示长度为i,最后一位为j,余数为k的个数。
然后转移方程就是 dp[i+1][x][(j*10+x)%7] += dp[i][j][k] (x从0到9)。这样不行因为R太大,每次求一定TLE。我当前的水平就想到这里了。。。
然后就是学习了。。。
学习点之一:发现当前最后一位j与当前的余数k,其状态数就70个。有趣的是,其状态转移是确定的,即是一个70*70的矩阵,这样我们对长度为X的数,我们先求长度为1的矩阵A,再将A*转移方程B^(X-1)。然后就是矩阵中的[0][0^9]的和。(表示余数为0,末尾数字是0~9)。然后矩阵的多少次方就可以用快速幂来求。
学习点之二:注意这样求的是长度为X的数。我们现在想求的是长度为1到长度为X的数,这样对于[L,R]来说,直接相减就好了。所以就想求A、A*B、A*B^2、A*B^3、。。。这样的前缀和。
之前求矩阵的前缀和求过这样的B、B^2、B^3、B^4。。。。可以用分治法来求。
但这样的我就不知道怎么搞了。
结果题解上是加了一列matrix[0^9][70]=1,并且matrix[70][70]=1。
这样当我们求A*(B^R)的时候,res.matrix[0][70]表示的就是前缀和矩阵的所有和。这块做法太亮了,太亮了。之前没有玩过这种方法。
附加学习点之三:friend Matrix operator ^(Matrix A, int n);这块调用了A矩阵,其值发生了变化,每一个test需要重置一下B矩阵。
最后想通的感觉特别痛快。
代码:
#include <iostream>
#include <algorithm>
#include <cmath>
#include <vector>
#include <string>
#include <cstring>
#pragma warning(disable:4996)
using namespace std;
const int maxn = 71;
const int mod = 1e9 + 7;
struct Matrix
{
int mat[maxn][maxn];
Matrix()
{
memset(mat, 0, sizeof(mat));
}
void clear(){ memset(mat, 0, sizeof(mat)); }
friend Matrix operator *(const Matrix &A, const Matrix &B);
friend Matrix operator ^(Matrix A, int n);
};
Matrix res1, res2;
Matrix operator *(const Matrix &A, const Matrix &B)
{
Matrix ret;
for (int i = 0; i < maxn; i++)
{
for (int j = 0; j < maxn; j++)
{
for (int k = 0; k < maxn; k++)
{
ret.mat[i][j] = (ret.mat[i][j] + (1LL*A.mat[i][k] * B.mat[k][j]) % mod) % mod;
}
}
}
return ret;
}
Matrix operator ^(Matrix A, int n)
{
Matrix ret;
for (int i = 0; i < maxn; i++)
{
ret.mat[i][i] = 1;
}
for (; n; n >>= 1, A = A*A)
if (n & 1)
ret = ret*A;
return ret;
}
inline int statu(int i, int j)
{
return i * 10 + j;
}
int main()
{
//freopen("i.txt","r",stdin);
//freopen("o.txt","w",stdout);
int t;
int i, j, L, R, K, x;
Matrix A, B;
for (i = 1; i < 10; i++)
A.mat[0][statu(i % 7, i)] = 1;
scanf("%d", &t);
while (t--)
{
scanf("%d%d%d", &L, &R, &K);
B.clear();
for (i = 0; i < 7; i++)
{
for (j = 0; j < 10; j++)
{
for (x = 0; x < 10; x++)
{
if (j + x != K)
{
B.mat[statu(i, j)][statu((i * 10 + x) % 7, x)] = 1;
}
}
}
}
for (i = 0; i < 10; i++)
B.mat[i][maxn - 1] = 1;
B.mat[maxn - 1][maxn - 1] = 1;
res1 = A*(B^R);
res2 = A * (B ^ (L - 1));
printf("%d\n", (res1.mat[0][maxn - 1] - res2.mat[0][maxn - 1] + mod) % mod);
}
//system("pause");
return 0;
}