Python编程之PowerLaw

该脚本文件从网上当的,然后自行改变了一点,具体从哪当的已忘了,在此贴出来让有兴趣的朋友学习学习吧

#!/usr/bin/env python
# -*-coding:utf-8 -*-

import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
from sklearn import linear_model
from scipy.stats import norm

def datasource():
    filename = raw_input('FileName:')
    n_components = int(raw_input('TrapNum:'))
    data = pd.read_excel(io=filename + '.xls', sheetname='Sheet1', header=0)
    data['Current'] *= 1e6
    x = data['Time'].reshape(-1, 1)
    y = data['Current'].reshape(-1, 1)

def DataGenerate():
    X = np.arange(10, 1010, 10)  # 0-1,每隔着0.02一个数据  0处取对数,会时负无穷  生成100个数据点
    print(X[0])
    noise=norm.rvs(0, size=100, scale=0.2)  # 生成50个正态分布  scale=0.1控制噪声强度
    Y=[]
    for i in range(len(X)):
       Y.append(10.8*pow(X[i],-0.3)+noise[i])  # 得到Y=10.8*x^-0.3+noise

    # plot raw data
    Y=np.array(Y)
    plt.title("Raw data")
    plt.scatter(X, Y,  color='black')
    plt.show()

    X=np.log10(X)  # 对X,Y取双对数
    Y=np.log10(Y)
    return X,Y

def DataFitAndVisualization(X,Y):
    # 模型数据准备
    X_parameter=[]
    Y_parameter=[]
    for single_square_feet ,single_price_value in zip(X,Y):
       X_parameter.append([float(single_square_feet)])
       Y_parameter.append(float(single_price_value))

    # 模型拟合
    regr = linear_model.LinearRegression()
    regr.fit(X_parameter, Y_parameter)
    # 模型结果与得分
    print('Coefficients: \n', regr.coef_,)
    print("Intercept:\n",regr.intercept_)
    # The mean square error
    print("Residual sum of squares: %.8f"
      % np.mean((regr.predict(X_parameter) - Y_parameter) ** 2))  # 残差平方和

    # 可视化
    plt.title("Log Data")
    plt.scatter(X_parameter, Y_parameter,  color='black')
    plt.plot(X_parameter, regr.predict(X_parameter), color='blue',linewidth=3)

    # plt.xticks(())
    # plt.yticks(())
    plt.show()

if __name__=="__main__":
    X,Y=DataGenerate()
    DataFitAndVisualization(X,Y)

阅读更多
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页