士兵站队问题
总提交 : 109 测试通过 : 37
比赛描述
输入
输入的第1行是士兵数n,1<=n<=10000。接下来n行是士兵的初始位置,每行2个整数x 和y,-10000<=x,y<=10000。
输出
输出的第1行中的数是士兵排成一行需要的最少移动步数。
样例输入
5
1 2
2 2
1 3
3 -2
3 3
样例输出
8
分析:
Y轴方向上的考虑
设目标坐标为M,即n个士兵最终需要移动到的Y轴的坐标值为M
n个士兵的Y轴坐标分别为:
Y0,Y1,Y2 …… …… Yn-1
则最优步数S=|Y0-M|+|Y1-M|+|Y2-M|+ …… …… +|Yn-1-M|
结论:M取中间点的值使得S为最少(最优)
X轴方向上的考虑
首先需要对所有士兵的X轴坐标值进行排序
然后,按从左至右的顺序依次移动到每个士兵所对应的“最终位置”(最优),所移动的步数总和就是X轴方向上需要移动的步数
例,最左的士兵移动到“最终位置”的最左那位,第二个士兵移动到“最终位置”的第二位
则总的步数为:士兵一移动步数+士兵二移动步数+ …… +士兵n移动步数
如何确定X轴方向上的最佳的“最终位置”?
共n个士兵
他们相应的X轴坐标为:X0,X1,X2 …… …… Xn-1
设,士兵需要移动到的“最终位置”的X轴坐标值为:k,k+1,k+2 …… …… k+(n-1)
则所求最优步数S=|X0-k|+|X1- (k+1) |+|X2-(k+2)|+ …… +|Xn-1-(k+(n-1))|
经过变形S=|X0-k|+|(X1-1)-k|+|(X2-2)-k|+ …… …… +|(Xn-1-(n-1))-k|
注意到公式的形式与Y轴方向上的考虑一样,同样是n个已知数分别减去一个待定数后取绝对值,然后求和
因此还是采用取中位数的办法求得k值,最后算出最优解。
代码:
#include<iostream>
#include<math.h>
using namespace std;
template<class T>
int Partition(T a[],int p,int r)
{
int i=p,j=r+1;
T x=a[p];
while(true)
{
while(a[++i]<x);
while(a[--j]>x);
if(i>=j) break;
int y=a[i];
a[i]=a[j];
a[j]=y;
}
a[p]=a[j];
a[j]=x;
return j;
}
template<class T>
void QuickSort(T a[],int p,int r)
{
if(p<r)
{
int q=Partition(a,p,r);
QuickSort(a,p,q-1);
QuickSort(a,q+1,r);
}
}
int count_Y(int data_Y[],int n)
{
int count=0;
QuickSort(data_Y,0,n-1);
int midY=n/2;
for(int i=0;i<n;i++)
count=count+(int)fabs(data_Y[i]-data_Y[midY]);
return count;
}
int count_X(int data_X[],int n)
{
int count=0;
QuickSort(data_X,0,n-1);
for(int i=0;i<n;i++)
data_X[i]=data_X[i]-i;
int midX=0;
QuickSort(data_X,0,n-1);
midX=n/2;
int mid=data_X[midX];
if(mid<-10000)
mid=-10000;
if(mid+n-1>10000)
mid=10000-n+1;
for(int j=0;j<n;j++)
count=count+(int)fabs(data_X[j]-mid);
return count;
}
int main()
{
int count_XY=0;
int n;
cin>>n;
int* X=new int[n];
int* Y=new int[n];
for(int i=0;i<n;i++)
cin>> X[i]>> Y[i];
count_XY=count_Y(Y,n)+count_X(X,n);
cout<<count_XY;
delete X;
delete Y;
return 0;
}