PEARL: 一个轻量的计算短文本相似度的表示模型

 | 💻 [code] | 💾 [data] | 🤗 PEARL-small | 🤗 PEARL-base | 论文

如何计算短文本相似度是一个重要的任务,它发生在各种场景中:

  1. 字符串匹配(string matching)。我们计算两个字符串是否表达同一个含义,比如“university” 和 “universities” 尽管看起来不同,但它们有着相同的语义。我们希望一个模型能够捕捉这种有形态变化的相似性。
  2. 模糊匹配 (Fuzzy Join)。这是数据科学中经常遇到的困难,当我们在join不同的表时候,列和列之间的名词并不是完全匹配的。比如在一个关于工资的表中有一个列叫avg_salary,而在另一个表中这个列叫做average_wage,这就使得我们很难匹配到相关的列。这里我们需要一个模型能够捕捉这种语义相似性。
  3. 实体检索 (Entity Retrieval)。这个任务目的是从一个实体候选集 (比如知识库)中找出最匹配的查询实体。比如输入的查询是“The New York Times”,候选集中有三个实体名称["NYTimes",
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值