Tikhonov正则化详解

目录

前言

一、Tikhonov正则化是什么?

二、使用步骤

1.线性回归模型

2.推广


前言

关于线性回归与非线性优化方向的工作,很多时候需要面对数据噪声,过拟合等问题,实测使用Tikhonov正则化可去的较好的效果。

Tikhonov正则化的发音为 ti−khuh−nawf。在中文中一般写作 "吉洪诺夫"。


一、Tikhonov正则化是什么?

Tikhonov正则化(也称为 ridge regression 或岭回归)是一种线性回归分析方法,在解决病态问题和过拟合问题时非常有用。在统计学和机器学习领域,它通过在优化目标函数中加入一项正则项(惩罚项)来改进模型的泛化能力,并且有助于稳定系数估计,尤其是在特征之间高度相关的数据集上。

二、使用步骤

1.线性回归模型

应用(示例):

在标准线性回归模型中,我们通常试图最小化残差平方和,即:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值