目录
前言
关于线性回归与非线性优化方向的工作,很多时候需要面对数据噪声,过拟合等问题,实测使用Tikhonov正则化可去的较好的效果。
Tikhonov正则化的发音为 ti−khuh−nawf。在中文中一般写作 "吉洪诺夫"。
一、Tikhonov正则化是什么?
Tikhonov正则化(也称为 ridge regression 或岭回归)是一种线性回归分析方法,在解决病态问题和过拟合问题时非常有用。在统计学和机器学习领域,它通过在优化目标函数中加入一项正则项(惩罚项)来改进模型的泛化能力,并且有助于稳定系数估计,尤其是在特征之间高度相关的数据集上。
二、使用步骤
1.线性回归模型
应用(示例):
在标准线性回归模型中,我们通常试图最小化残差平方和,即: