ResNet(二)架构解析

本文详细探讨了ResNet网络结构,特别是在ImageNet上的表现,如何通过identity mapping和residual mapping解决深度网络性能下降的问题。此外,还介绍了Resnet101的架构,包括其5个主要部分和总计101层的设计,其中不包含激活层或Pooling层。
摘要由CSDN通过智能技术生成

数据集

一、Resnet 背景了解

1.1 Resnet 在ImageNet上的结果

  从上图可以看出:“随着网络加深,准确率下降”的问题,Resnet提供了两种选择方式,也就是identity mapping和residual mapping,如果网络已经到达最优,继续加深网络,residual mapping将被push为0,只剩下identity mapping,这样理论上网络一直处于最优状态了,网络的性能也就不会随着深度增加而降低了。

1.2

  

1.3

  

二、Resnet不同的架构

2.1 Resnet不同的结构图

  Resnet网络都分成5部分,分别是:conv1,conv2_x,conv3_x,conv4_x,conv5_x,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值