现代信号处理笔记 2 统计信号处理基础(Statistical Signal Processing)

重新回顾概率统计过程:

DataModelDecision

实际工程中,就是从这三点出发,走完概率统计的整个过程。

这里要清楚数据是上帝给的,模型是人造的,不可避免存在各种各样的问题。数据到模型这个过程就叫做统计statistic。Data就是采样samples,信号的结构,关键参数。我们希望通过采样,让我们不清楚的东西变得清楚。


目录

一、一个例子(说明统计过程)

1、建立统计

2、使得统计的方差变小

二、统计最优性(Optimality in Statistic)

1、参数化模型(Parametric Model)

2、损失函数

1、Mean Square Error(MSE)

3、无偏性

4、最小均方误差(Minimum Mean Square Error,MMSE)

4.1、 uniformly MMSE

4.2、uniformly minimum variance

三、条件期望

四、条件方差

五、充分统计量和UMMSE

5.1、充分统计量(Sufficient Statistic)



一、一个例子(说明统计过程)

1、建立统计

一个直流分量A,A是未知量。采样为 绝大多数情况下都不是A,跟A之间一定差着某种噪声。

,采样两次相加,噪声相加就会变小。所以不仅要相加,而且还要除2,这个除2其实就是信号处理的过程(利用数学手段,对所采集带的数据进行计算)。在这里需要对观念进行梳理:N为随机变量,A为确定常数,X为随机变量。

2、使得统计的方差变小

检查一下方差是否变小(就是为了让方差变小),令

准备工作:给噪声建模型,

需要加入独立性假设,不独立有些复杂。

因此,通过两次采样,并作了一下“处理”,我们所得到的方差的确减小了。独立使得方差得以减小,所以每次实验都要把实验装置清零。

假设搞了N次实验

方差仅代表处理结果自身的抖动,所以还要看一下均值。

由线性性,均值的平均=平均的均值=0。看起来这个估计还是相当不错的。但是到现在位置,还是没名没份的,还是我们拍脑袋拍出来的。

二、统计最优性(Optimality in Statistic)

希望能够建立起统计当中的某种最优性(Optimality in Statistic)、同时把这种最优性当作指导方针,贯彻到之后的学习中。所以,需要:

1、参数化模型(Parametric Model)

我们的采样要服从某种分布

我们采样的目的就是进行计算,从而确定这个未知参数,使这个参数尽可能靠谱。
在上一个例子中,我们并没有知道噪声的分布。所以假设噪声是高斯的,然后验证一下。

2、损失函数

计算估计和实际的损失。 ,是采样的函数。上述两点全部都是先验知识(Prior Knowledge)这个先验知识:

  1. 来源于工程背景,背景会影响模型产出
  2. 来源于经验
  3. 建模时往往会屈从于能力不足,因为复杂模型建了之后处理不了

1、Mean Square Error(MSE)

找到一种运算,使得这个均方误差最小。因为 也随机变量,简单分析一下:

是确定值,所以可以提出来,所以有 ,因为统计意义上,这个必须是0。

我们从未真正懂得过什么,我们只是在习惯什么。

--冯∙ 诺伊曼 

因此上式为:

要在方差和偏差之间做出Tradeoff,Bias Variance Tradeoff
因为在数学上是平等的,但是在实际应用中可能差很多。但还是希望方差最小。因为,偏差代表的是系统误差(System Error),方差是随机误差(Random Error),系统误差很容易通过系统的方法矫正掉。
所以一般我们假定我们的估计是无偏的。接下来介绍无偏性。

3、无偏性

​​​现在进行了N次采样, ,使用 ,均方误差用下式来估计:

​​​​​​上式中的一个条件是,连续的测量一个量,测量的结果取平均,肯定是无偏的,因为每一个是无偏的,噪声的均值是0,所以后面那一项等于0
上式实现不了,因为 根本就不知道,在实验中都有经验,如果theta不知道,可以用“样本均值”进行取代,但是一道用样本均值进行取代,前面系数是要变化的(变为N-1,为了满足无偏性条件)。

 无偏性证明

因为i.i.d条件,因此上式

上式中2 ,而 共有(N-1)项。

定性思考:为什么是N-1?因为:从 自由度是减小的。

4、最小均方误差(Minimum Mean Square Error,MMSE)

进一步定义最优:我们希望能够极小化MSE(Minimum Mean Square Error,MMSE)

4.1、 uniformly MMSE

希望找到uniformly MMSE,对任意 适用。(EG:神医和糖尿病,只看一点,不及其余,只看一眼,说谁都有糖尿病,总有说对的时候。)

医师资格考试,每一科都要大于均值,对应的就是无偏性,(在每一个theta上,都要满足均值为0)

4.2、uniformly minimum variance

在无偏的基础上,重新看uniformly MMSE,就变成方差了,因为偏差没有了(uniformly minimum variance,UMV)。

三、条件期望

条件期望 以X为条件的Y期望,是随机变量(无条件期望是确定性参数)。Y是期望的对象,在E的过程中被E掉了,但是|右边X仍然是随机变量,并没有因为E消失,仍保留一定随机性;观念要灵活,对于随机性的看法,在对条件期望的理解上要进行转换,在计算Y的期望的时候,X(先验、已知)起到的作用是随机性暂时消失,可以认为是确定的。计算完成后再暴露出其随机性,再处理就变简单了。

举个例子: 是独立同分布的,我们计算其和的分布  

现在N变成随即量,同样计算其和的分布,如果沿用刚才的结果

应该是

条件期望的两个重要性质:(从这里开始到条件方差之前都还没有弄很懂)

1、

2、 

条件期望与最小均方误差的关系,最优化:

 能够对Y进行估计得最优X构成的统计,是条件期望

​要证明交叉项为0。把X条件住,随机属性分析,X条件住可以确定三项

其中(由线性性)

因此交叉项为0。

四、条件方差

条件期望再期望就是无条件期望,

但方差不是,方差是2阶,方差的方差是4阶?
什么是条件方差?是一个随机变量,

无条件方差为

五、充分统计量和UMMSE

5.1、充分统计量(Sufficient Statistic)

 

 对其进行处理,尽可能包含 theta的信息。举例说明:

Eg1:假定 估计均值。

对估计有帮助吗?均值等于相减,方差为相加,因此

这个统计根本没用,因为theta没有了,(Ancillary,多余的)

Eg2:假定fx,θ=U0,θ

θ1X=minX1,…,XN

θ2X=maxX1,…,XN

肯定是2更好,因为更接近theta。

问题来了:有没有这样的统计,把Theta相关信息补干净。浓缩了采样数据中所有的信息,不会丢失掉有关theta

上式跟theta无关。

 

最优估计:

万事俱备,接下来计算最优。给出求最优估计的过程(Optimizing Procedure)。

断言,theta3也是无偏的。

以上为Rao-Blackwell定理。可以通过这个过程缩小方差。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值